位置:成果数据库 > 期刊 > 期刊详情页
用稳定双共轭梯度方法数值求解球坐标系下的Poisson方程
  • ISSN号:0253-2778
  • 期刊名称:《中国科学技术大学学报》
  • 时间:0
  • 分类:O29[理学—应用数学;理学—数学] O35[理学—流体力学;理学—力学]
  • 作者机构:[1]Faculty of Engineering Science, University of Science and Technology of China, Hefei 230026, P. R. China, [2]Faculty of Construction and Environment, The Hong Kong Polytechnic University Hung Horn, Kowloon, Hong Kong, P. R. China
  • 相关基金:Project supported by the National Natural Science Foundation of China (No. 11372303)
中文摘要:

In view of the fact that large scale vortices play the substantial role of momentum transport in turbulent flows, large eddy simulation(LES) is considered as a better simulation model. However, the sub-grid scale(SGS) models reported so far have not ascertained under what flow conditions the LES can lapse into the direct numerical simulation. To overcome this discrepancy, this paper develops a swirling strength based the SGS model to properly model the turbulence intermittency, with the primary characteristics that when the local swirling strength is zero, the local sub-grid viscosity will be vanished. In this paper, the model is used to investigate the flow characteristics of zero-incident incompressible turbulent flows around a single square cylinder(SC)at a low Reynolds number range Re ∈ [103, 104]. The flow characteristics investigated include the Reynolds number dependence of lift and drag coefficients, the distributions of time-spanwise averaged variables such as the sub-grid viscosity and the logarithm of Kolmogorov micro-scale to the base of 10 at Re = 2 500 and 104, the contours of spanwise and streamwise vorticity components at t = 170. It is revealed that the peak value of sub-grid viscosity ratio and its root mean square(RMS) values grow with the Reynolds number. The dissipation rate of turbulent kinetic energy is larger near the SC solid walls.The instantaneous factor of swirling strength intermittency(FSI) exhibits some laminated structure involved with vortex shedding.

英文摘要:

In view of the fact that large scale vortices play the substantial role of momentum transport in turbulent flows, large eddy simulation (LES) is considered as a better simulation model. However, the sub-grid scale (SGS) models reported so far have not ascertained under what flow conditions the LES can lapse into the direct nu-merical simulation. To overcome this discrepancy, this paper develops a swirling strength based the SGS model to properly model the turbulence intermittency, with the primary characteristics that when the local swirling strength is zero, the local sub-grid viscosity will be vanished. In this paper, the model is used to investigate the flow characteris-tics of zero-incident incompressible turbulent flows around a single square cylinder (SC) at a low Reynolds number range Re ∈ [103, 104]. The flow characteristics investigated include the Reynolds number dependence of lift and drag coefficients, the distributions of time-spanwise averaged variables such as the sub-grid viscosity and the logarithm of Kolmogorov micro-scale to the base of 10 at Re=2 500 and 104, the contours of spanwise and streamwise vorticity components at t = 170. It is revealed that the peak value of sub-grid viscosity ratio and its root mean square (RMS) values grow with the Reynolds number. The dissipation rate of turbulent kinetic energy is larger near the SC solid walls. The instantaneous factor of swirling strength intermittency (FSI) exhibits some laminated structure involved with vortex shedding.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《中国科学技术大学学报》
  • 北大核心期刊(2011版)
  • 主管单位:中国科学院
  • 主办单位:中国科学技术大学
  • 主编:何多慧
  • 地址:安徽省合肥市金寨路96号
  • 邮编:230026
  • 邮箱:JUST@USTC.EDU.CN
  • 电话:0551-63601961 63607694
  • 国际标准刊号:ISSN:0253-2778
  • 国内统一刊号:ISSN:34-1054/N
  • 邮发代号:26-31
  • 获奖情况:
  • 1999年,全国优秀高等学校自然科学学报及教育部优...,2001年,安徽省1999-2001年度优秀科技期刊一等奖,2002年,第三届华东地区优秀期刊奖
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国化学文摘(网络版),美国数学评论(网络版),德国数学文摘,荷兰文摘与引文数据库,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:8237