位置:成果数据库 > 期刊 > 期刊详情页
基于凸优化的抗旋转图像盲源分离算法研究
  • ISSN号:1003-0530
  • 期刊名称:《信号处理》
  • 时间:0
  • 分类:TN911.7[电子电信—通信与信息系统;电子电信—信息与通信工程]
  • 作者机构:[1]北京交通大学信息科学研究所,北京100044
  • 相关基金:基金项目:广东省中国科学院全面战略合作项目(The Gnangdong Chinese Academy of Science comprehensive strategic cooperation project)(20108090301014);北京市“现代信息科学与网络技术”重点实验室基金资助项目和铁道部“铁路信息科学与工程”开放实验室基金资助项目(Thekey Laboratory of Advanced Information Science and Network Technology of BeOingort he Key Laboratory of Information&Engineering of Railway Ministry)(XDXXl004);中央高校基本科研业务费(The Fundamental Research Funds for the Central Universities)(2012.1BM037);北京市自然科学基金(BeOingNaturalScienceFoundation)(4102051)
中文摘要:

盲源分离是指在没有源信号任何先验知识的情况下,只根据多个观测信号实现对源信号的恢复。本文在CAMNS算法的基础上提出了一种抗旋转的图像盲源分离新算法,该算法首先对观测图像进行预处理,提取图像旋转不变因子,然后利用图像空间局部显著性的假设将旋转后的图像盲源分离转化为可解的凸优化问题,进而求出分离矩阵,最后反解混合方程组确定源图像。实验结果表明:新算法有效地消除了旋转对盲源分离的影响,算法性能指标较ICA算法、NMF算法和CAMNS算法提高了近80%以上。

英文摘要:

Blind source separation is how to recover a set of signals from a set of their observations, without any priori knowledge of sources. In this paper, a novel blind source separation algorithm of image signals against rotation based on the convex analysis of mixtures of non-negative sources is proposed. This new method firstly weprocesses the observations, and then extracts the rotation invariant factor, according to the special assumption called local dominance which is showed in the convex analysis of mixtures of non-negative sources algorithm, the issue of blind separation of image sources which is influ- enced by rotation turns into a solvable convex optimization, through which the mixing matrix can be determined. Finally by solving the mixing equation group to obtain the image sources. Experimental results demonstrate that this novel algorithm is quite effective for blind separation of image sources against rotation and shows 80 percent increase in the performance index compared to ICA, NMF and CAMNS algorithms.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《信号处理》
  • 中国科技核心期刊
  • 主管单位:中国科学技术协会
  • 主办单位:中国电子学会
  • 主编:谢维信
  • 地址:北京鼓楼西大街41号
  • 邮编:100009
  • 邮箱:xhclfh@sohu.com
  • 电话:010-64010656
  • 国际标准刊号:ISSN:1003-0530
  • 国内统一刊号:ISSN:11-2406/TN
  • 邮发代号:80-531
  • 获奖情况:
  • 国家一级科技期刊
  • 国内外数据库收录:
  • 美国剑桥科学文摘,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版)
  • 被引量:10219