位置:成果数据库 > 期刊 > 期刊详情页
SnO2 nanospheres among GO and SWNTs networks as anode for enhanced lithium storage performances
  • ISSN号:2095-4956
  • 期刊名称:《能源化学:英文版》
  • 时间:0
  • 分类:TB33[一般工业技术—材料科学与工程] TM912[电气工程—电力电子与电力传动]
  • 作者机构:College of Physics and Energy, Fujian Normal University, and Fujian Provincial Key Laboratory of Quantum Manipulation and New Energy Materials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences
  • 相关基金:supported by the Natural Science Foundations of China(No.21203025,51202031,11004032 and 11074039);Funds of Education Committee of Fujian Province(JK2013010 and JA13064)
中文摘要:

Conducting supporters of purified single-walled carbon nanotubes(SWNTs) and graphene oxide(GO)were used to confine pomegranate-structured Sn O2 nanospheres for forming SnO2-GO-SWNT composites.As anode material for lithium ion batteries(LIBs), this composite exhibits a stable and large reversible capacity together with an excellent rate capability. In addition, an analysis of the AC impedance spectroscopy has been used to confirm the enhanced mechanism for LIB performance. The improved electrochemical performance should be ascribed greatly to the reinforced synergistic effects between GO and SWNT networks, and their enhanced contribution of the conductivity. These results indicate that this composite has potential for utilization in high-rate and durable LIBs.

英文摘要:

Conducting supporters of purified single-walled carbon nanotubes (SWNTs) and graphene oxide (GO) were used to confine pomegranate-structured SnO2 nanospheres for forming SnO2-GO-SWNT composites. As anode material for lithium ion batteries (LIBs), this composite exhibits a stable and large reversible capacity together with an excellent rate capability. In addition, an analysis of the AC impedance spectroscopy has been used to confirm the enhanced mechanism for LIB performance. The improved electrochemical performance should be ascribed greatly to the reinforced synergistic effects between GO and SWNT networks, and their enhanced contribution of the conductivity. These results indicate that this composite has potential for utilization in high-rate and durable LIBs. (C) 2016 Science Press and Dalian Institute of Chemical Physics. All rights reserved.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《能源化学:英文版》
  • 中国科技核心期刊
  • 主管单位:中国科学院
  • 主办单位:中国科学院大连化学物理研究所
  • 主编:包信和
  • 地址:大连中山路457号
  • 邮编:116023
  • 邮箱:jngc@dicp.ac.cn
  • 电话:0411-84379237
  • 国际标准刊号:ISSN:2095-4956
  • 国内统一刊号:ISSN:21-1585/O4
  • 邮发代号:82-170
  • 获奖情况:
  • 四川省质量一级期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国化学文摘(网络版),荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,美国科学引文索引(扩展库),美国石油文摘,中国中国科技核心期刊
  • 被引量:66