位置:成果数据库 > 期刊 > 期刊详情页
基于模糊测度和证据理论的模糊聚类集成方法
  • ISSN号:1001-0920
  • 期刊名称:《控制与决策》
  • 时间:0
  • 分类:TP391.4[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]空军工程大学防空反导学院,陕西西安710051
  • 相关基金:国家自然科学基金(No.60975026,No.61273275)
中文摘要:

如何构造差异性大且精确度高的基分类器是集成学习的重点,为此提出一种新的集成学习方法——利用PSO寻找使得AdaBoost依样本权重抽取的数据集分类错误率最小化的最优特征权重分布,依据此最优权重分布对特征随机抽样生成随机子空间,并应用于AdaBoost的训练过程中.这就在增加分类器间差异性的同时保证了基分类器的准确度.最后用多数投票法融合各基分类器的决策结果,并通过仿真实验验证该方法的有效性.

英文摘要:

It is an open issue how to generate base classifiers with higher diversity and accuracy for ensemble learning. In this paper, a novel algorithm is proposed to solve this problem---particle swarm optimization is used to search for an optimal feature weight distribution which makes the classification error rate of Waining data sample by the distribution in AdaBoost minimal. Then, the feature subspace is constructed according to the optimal feature weight distribution, which is applied into the training process of AdaBoost, Thus, the accuracy of base classifier is advanced; meanwhile, the diversity between classifiers is improved. Finally, major- ity voting method is utilized to fuse the base classifiers' results and experiments have been done to attest the validity of the proposed algorithm.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《控制与决策》
  • 北大核心期刊(2011版)
  • 主管单位:中华人民共和国教育部
  • 主办单位:东北大学
  • 主编:张嗣瀛 王福利
  • 地址:沈阳市东北大学125信箱
  • 邮编:110004
  • 邮箱:kzyjc@mail.neu.edu.cn
  • 电话:024-83687766
  • 国际标准刊号:ISSN:1001-0920
  • 国内统一刊号:ISSN:21-1124/TP
  • 邮发代号:8-51
  • 获奖情况:
  • 1997年被评为辽宁省优秀编辑部,1999年期刊影响因子在信息与系统类期刊中排名第二位
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国数学评论(网络版),德国数学文摘,荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:32961