位置:成果数据库 > 期刊 > 期刊详情页
带相关噪声的观测融合稳态Kalman滤波算法及其最优性
  • ISSN号:1671-1815
  • 期刊名称:《科学技术与工程》
  • 时间:0
  • 分类:O211.64[理学—概率论与数理统计;理学—数学]
  • 作者机构:[1]黑龙江大学自动化系,哈尔滨150080
  • 相关基金:基金项目:国家自然科学基金(60374026)资助.
中文摘要:

对于带相关的输入白噪声和观测白噪声及相关观测白噪声的多传感器线性离散定常随机系统,用加权最小二乘(WLS)法提出了一种加权观测融合稳态Kalman滤波算法,并基于信息滤波器证明了它同集中式观测融合稳态Kalman滤波算法功能的等价性。因而,它具有渐近全局最优性,且可减少计算负担。一个跟踪系统数值仿真例子验证了它的功能等价性。

英文摘要:

For the muhisensor linear discrete time-invariant stochastic control systems with correlated input and measurement white noises, and with correlated measurement noises, a weighted measurement fusion steady-state Kalman filtering algorithm is presented by using the weighted least squares (WLS)method. Based on the information filter, it is proved that it is functionally equivalent to the centralized measurement fusion steady-state Kalman filte- ring algorithm, so that it has asymptotic global optimality, and can reduce the computational burden. A numerical simulation examples for a tracking systems verifies its functional equivalence.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《科学技术与工程》
  • 北大核心期刊(2011版)
  • 主管单位:中国科学技术协会
  • 主办单位:中国技术经济学会
  • 主编:明廷华
  • 地址:北京市学院南路86号
  • 邮编:100081
  • 邮箱:ste@periodicals.net.cn
  • 电话:010-62118920
  • 国际标准刊号:ISSN:1671-1815
  • 国内统一刊号:ISSN:11-4688/T
  • 邮发代号:2-734
  • 获奖情况:
  • 国内外数据库收录:
  • 中国中国科技核心期刊,中国北大核心期刊(2011版),中国北大核心期刊(2014版)
  • 被引量:29478