位置:成果数据库 > 期刊 > 期刊详情页
一种网页分类中基于图的半指导学习算法
  • 期刊名称:刘蓉,周建中,一种网页分类中基于图的半指导学习算法,计算机应用研究, 25(3) .735-737,
  • 时间:0
  • 分类:TP301.6[自动化与计算机技术—计算机系统结构;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]华中科技大学数字化工程与仿真中心,武汉430074, [2]华中师范大学物理科学与技术学院电信系,武汉430079
  • 相关基金:国家自然科学基金资助项目(50579022,50539140)
  • 相关项目:水电能源及其在电力市场竞争中的混沌演化与双赢策略研究
中文摘要:

提出一种基于图的半指导学习算法用于网页分类。采用k近邻算法构建一个带权图,图中节点为已标志或未标志的网页,连接边的权重表示类的传播概率,将网页分类问题形式化为图中类的概率传播。为有效利用图中未标志节点辅助分类,结合网页的内容信息和链接信息计算网页间的链接权重,通过已标志节点,类别信息以一定概率从已标志节点推向未标志节点。实验表明,本文提出的算法能有效改进网页分类结果。

英文摘要:

This paper proposed a graph-based semi-supervise learning method, and applied to the Web document classification. Used k-nearest neighbor algorithm to construct a weighted graph with edge weights representing the similarity between the nodes, and the nodes in the graph were labeled and unlabeled Web pages. In order to use unlabeled data to help classification and get higher accuracy, computed edge weights of the graph through combining weighting schemes and link information of Web pages. By using probabilistic matrix methods and belief propagation, the labeled nodes pushed out labels through unlabeled nodes. The learning problem was then formulated in terms of label propagation in a graph. Experiments on the WebKB dataset indicate that the graph-based semi-supervise learning method can improve the effectiveness of Web document classification.

同期刊论文项目
同项目期刊论文