位置:成果数据库 > 期刊 > 期刊详情页
集成多种背景语义知识的共指消解
  • ISSN号:1003-0077
  • 期刊名称:《中文信息学报》
  • 时间:0
  • 分类:TP391[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]哈尔滨工业大学信息检索研究室,黑龙江哈尔滨150001
  • 相关基金:国家自然科学基金资助项目(60575042,60503072);国家863计划资助项目(2006AA01Z145)
中文摘要:

共指消解是信息抽取中一个重要子任务。近年来,许多学者尝试利用统计机器学习的方法来进行共指消解并取得了一定的进展。背景知识作为新的研究热点已经被越来越多地利用在自然语言处理的各个领域。该文集成多种背景语义知识作为基于二元分类的共指消解框架的特征,分别在WordNet、维基百科上提取背景知识,同时利用句子中的浅层语义关系、常见文本模式以及待消解词上下文文本特征。并利用特征选择算法自动选择最优的特征组合,同时对比同样的特征下最大熵模型与支持向量机模型的表现。在ACE数据集上实验结果表明,通过集成各种经过特征选择后的背景语义知识,共指消解的结果有进一步提高。

英文摘要:

The coreference resolution is an important subtask of information extraction. Recently statistical machine learning methods have been substantially attempted for this issue with some achievements. In this paper, we try to integrate the background semantic knowledge, which is a new subject being introduced in every field of NLP nowadays, into the classical pairwise classification framework for coreference resolution. We extract background knowledge from WordNet and Wikipedia, and exploit the semantic role labeling, general pattern knowledge and the context of mention as well. In the experiment, the feature selection algorithm is employed to decide the best features set, on which the maximum entropy model and SVM model are compared for their performance. The experimental results on ACE dataset exhibit the improvement of coreference resolution after adding selected background semantic knowledge.

同期刊论文项目
期刊论文 38 会议论文 15
同项目期刊论文
期刊信息
  • 《中文信息学报》
  • 北大核心期刊(2011版)
  • 主管单位:中国科学技术协会
  • 主办单位:中国中文信息学会 中国科学院软件研究所
  • 主编:孙茂松
  • 地址:北京海淀中关村南四街4号中科院软件所
  • 邮编:100190
  • 邮箱:jcip@iscas.ac.cn
  • 电话:010-62562916
  • 国际标准刊号:ISSN:1003-0077
  • 国内统一刊号:ISSN:11-2325/N
  • 邮发代号:
  • 获奖情况:
  • 国内外数据库收录:
  • 日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:9136