在C^d中,由函数g(z)=∑^∞n=0anz^n(an≥0)生成的解析Hilbert空间H^9d(Bd√R)是酉不变的再生核Hilbert空间.本文证明了,当d≥2时,若sup{anR^n}〈+∞,则有球代数A(Bd√R)中的函数.f£M,即H^9d(Bd√R)上的乘子代数形M是(Bd√R)的真子集.由此可知,若存在M〉0,使得0≤a0≤a1≤…≤M,n=0,1,2,…,则H^9d(Bd√R)不是次正规的.因而不存在C^d中的正测度μ,使得对任何F∈H^9d(Bd√R),‖f‖^2H^9d=∫Cd│f(z)│^2dμ(z).而且在H^9d(Bd√R)上的vonNeumann不等式不成立.
Let Bd be the unit ball ofd-dimensional complex Euclid space C^d, H^9d(Bd√R) the reproducing kernel Hilbert space with u-invariant reproducing kernel K(z, w) = 9((z,w), where g(z)=∑^∞n=0anz^n(an≥0) is the generating function of the space H^9d(Bd√R) In this paper, we show that the multiplier algebra of the spaceH^9d(Bd√R) a proper subset of H∞(Bd√R), and there exists a holomorphic self-mapping w from Bd into Bd√R such that the multiplication operator Mwis not bounded when the {an}^∞n=0is bounded andd ≥ 2. Frthermore, we prove that if the coefficients sequence {an}^∞n=0 of the generating function g is a bounded, non-decreasing sequence, i.e. there exists a positive number M such that 0≤a0〈al ≤...≤M, n=0,1,2,..., H^9d(Bd√R) then the space H^9d(Bd√R) is not subnormal, in other words, there is not any positive measure μ on C^d such that‖f‖^2H^9d=∫Cd│f(z)│^2dμ(z)M for each fεH^9d(Bd√R) and then von Neumann's inequality does not hold on the space H^9d(Bd√R)