位置:成果数据库 > 期刊 > 期刊详情页
Fault Diagnosis for Wind Turbine Based on Improved Extreme Learning Machine
  • ISSN号:1006-2467
  • 期刊名称:《上海交通大学学报》
  • 时间:0
  • 分类:TM315[电气工程—电机]
  • 作者机构:Research Centre of Shanghai Equipment Manufacturing Industry Development, Shanghai Dianji University, School of Mechanical Engineering, Shanghai Jiao Tong University
  • 相关基金:the National Natural Science Foundation of China(No.51535007);the Innovation Program of Shanghai Municipal Education Commission(No.15ZS079)
中文摘要:

A fault diagnosis method based on improved extreme learning machine(IELM) is proposed to solve the weakness(weak generalization ability, low diagnostic rate) of traditional fault diagnosis with feedforward neural network algorithm. This method fuses signal feature vectors, extracts six parameters as the principal component analysis(PCA) variables, and calculates correlation coefficient matrix among the variables. The weight values of control parameters in the extreme learning model are dynamically adjusted according to the test samples’ constantly changing. Consequently, the weight fixed drawback in the original model can be remedied. A fault simulation experiment platform for wind turbine drive system is built, eight kinds of fault modes are diagnosed by the improved extreme learning model, and the result is compared with that of other machine learning methods.The experiment indicates that the method can enhance the accuracy and generalization ability of diagnosis, and increase the computing speed. It is convenient for engineering application.

英文摘要:

A fault diagnosis method based on improved extreme learning machine (IELM) is proposed to solve the weakness (weak generalization ability, low diagnostic rate) of traditional fault diagnosis with feedforward neural network algorithm. This method fuses signal feature vectors, extracts six parameters as the principal component analysis (PCA) variables, and calculates correlation coefficient matrix among the variables. The weight values of control parameters in the extreme learning model are dynamically adjusted according to the test samples’ constantly changing. Consequently, the weight fixed drawback in the original model can be remedied. A fault simulation experiment platform for wind turbine drive system is built, eight kinds of fault modes are diagnosed by the improved extreme learning model, and the result is compared with that of other machine learning methods. The experiment indicates that the method can enhance the accuracy and generalization ability of diagnosis, and increase the computing speed. It is convenient for engineering application. ? 2017, Shanghai Jiaotong University and Springer-Verlag Berlin Heidelberg.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《上海交通大学学报》
  • 中国科技核心期刊
  • 主管单位:中华人民共和国教育部
  • 主办单位:上海交通大学
  • 主编:郑杭
  • 地址:上海市华山路1954号15F
  • 邮编:200030
  • 邮箱:shjt@chinajournal.net.cn
  • 电话:021-62933373 62932534
  • 国际标准刊号:ISSN:1006-2467
  • 国内统一刊号:ISSN:31-1466/U
  • 邮发代号:4-256
  • 获奖情况:
  • 1996年全国优秀科技期刊奖,1992年、1996年、1999年国家教育部系统优秀科技期刊奖,2002年“百种重点期刊奖”,2003年百种中国杰出学术期刊,2004年教育部全国高校优秀科技期刊一等奖,2004年“百种重点期刊奖”
  • 国内外数据库收录:
  • 美国化学文摘(网络版),美国数学评论(网络版),德国数学文摘,荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:30903