位置:成果数据库 > 期刊 > 期刊详情页
基于多特征距离学习的视频分类
  • ISSN号:1000-386X
  • 期刊名称:计算机应用与软件
  • 时间:2012.12.12
  • 页码:10-12
  • 分类:TP3[自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]复旦大学计算机科学技术学院,上海200433
  • 相关基金:国家自然科学基金项目(61073002).
  • 相关项目:基于语义上下文建模的图像语义分析技术研究
中文摘要:

视频分类在视频检索、内容分析等应用领域具有十分重要的意义。多模态视频特征,如音频、静态图像及视频动作特征等都已经应用于视频分类中,因此如何对多种视频特征进行最佳组合来改善视频分类的性能成为了一个重要研究课题。提出一种基于L1正则化的距离学习方法,对利用多种特征组合提高视频语义标注性能的问题进行研究。由于引入一阶范数正则项,使得模型拥有选取多种视频特征进行最优组合的能力。该方法在通用的Columbia Consumer Video(CCV)视频数据集上显著提高了视频分类的性能。

英文摘要:

Video classification plays a significant role in video retrieval and content analysis. Multi-modal video features like audio, static image features and video motion features, etc. have been widely used in video classification, therefore how the multiple video features could be optimally combined to improve the video classification performance has become an important research topic. In this paper we propose an L1 regularised distance learning model to study the subject of improving video semantic annotation performance with multiple features combination. The model gains the capability of an optimal combination of the selected muhiple viteo features due to the L1 norm regularisation term is introduced. Experiments show that our approach substantially improves the performance of video classification on universal Columbia Consumer Video (CCV) video dataset.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机应用与软件》
  • 北大核心期刊(2011版)
  • 主管单位:上海科学院
  • 主办单位:上海市计算技术研究所 上海计算机软件技术开发中心
  • 主编:朱三元
  • 地址:上海市愚园路546号
  • 邮编:200040
  • 邮箱:cas@sict.stc.sh.cn
  • 电话:021-62254715 62520070-505
  • 国际标准刊号:ISSN:1000-386X
  • 国内统一刊号:ISSN:31-1260/TP
  • 邮发代号:4-379
  • 获奖情况:
  • 全国计算机类中文核心期刊
  • 国内外数据库收录:
  • 波兰哥白尼索引,美国剑桥科学文摘,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2011版),中国北大核心期刊(2000版)
  • 被引量:27463