提出了一种以转换句式为回退启发信息的双重过滤的假设检验方法,从而在很大程度上改善了Korhonen英语动词SCF自动获取系统的整体性能.实验数据表明,同MLE过滤方法相比,精确率提高到91.18%,召回率没有降低,绝对F值提高3.96%,相对F值提高13.72%;同当前最优结果相比,上述指标都有不同程度的提高.这使得英语动词次范畴化自动获取结果对于某些具体的NLP任务或进一步的人工校对来说有了更大的实用性价值.
This paper proposes a new filtering method with diathesis alternation as heuristic information, which improved the performance of Korhonen's English SCF acquisition system remarkably, with the precision increased to 91.18%, recall unchanged, the absolute F-measure increased by 3.96, and the relative F-measure by 13.72, thus making the acquired lexicon much more practical for further manual proofreading and other NLP uses.