位置:成果数据库 > 期刊 > 期刊详情页
基于退火过渡采样的无向主题模型学习方法
  • ISSN号:0469-5097
  • 期刊名称:《南京大学学报:自然科学版》
  • 时间:0
  • 分类:TP181[自动化与计算机技术—控制科学与工程;自动化与计算机技术—控制理论与控制工程]
  • 作者机构:中国科学院自动化研究所,北京100190
  • 相关基金:国家自然科学基金(61472423,61432008,61532006,U1135005)
中文摘要:

Replicated Softmax model,是用于文本数据挖掘的无向概率主题模型,为描述语料库的主题分布提供了一个功能强大的框架.然而,作为一个无向的概率图模型,由于归一化常数的存在,该模型的参数学习是十分困难的.针对这一问题,利用退火过渡马尔科夫蒙特卡洛采样方法,借助近似极大似然学习的思想,实现了模型的参数学习.该算法采用基于退火过渡的马尔科夫蒙特卡洛采样方法,高效地探索存在多个孤立的模态的概率分布,提高对概率分布的逼近程度,从而提高了参数学习的效率和精度.实验结果证明了算法在训练时间、泛化能力和文档检索等三个方面的优势.

英文摘要:

Replicated Softmax model,an undirected topic model for text data mining,provides a powerful framework for extracting semantic topics form document collections.Compared to the directed topic models,it has a better way of dealing with documents of different lengths,and computing the posterior distribution over the latent topic values is easy.However,due to the presence of the global normalizing constant,maximum learning procedure for this model is intractable.Constrastive Divergence(CD)algorithm,is one of the dominant learning schemes for RBMs based on Markov chain Monte Carlo(MCMC)methods.It relies on approximating the negative phase contribution to the gradient with samples drawn from a short alternating Gibbs Markov chain starting from the observed training sample.However,using these short chains yields a low variance,but biased estimate of the gradient,which makes the learning procedure rather slow.The main problem here is the inability of Markov chain to efficiently explore distributions with many isolated modes.In this paper,a new class of stochastic approximation algorithms is considered to learn Replicated Softmax model.To efficiently explore highly multimodal distributions,we use a MCMC sampling scheme based on tempered transitions to generate sample states of a thermodynamic system.The tempered transitions move systematically from the desired distribution,to the easily-sampled distribution,and back to the desired distribution.This allows the Markov chain to produce less correlated samples between successive parameter updates,and henceconsiderably improves parameter estimates.The experiments are conducted on three popular text datasets,and the results demonstrate that we can successfully learn good generative model of real text data that performs well on topic modelling and document retrieval.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《南京大学学报:自然科学版》
  • 中国科技核心期刊
  • 主管单位:中华人民共和国教育部
  • 主办单位:南京大学
  • 主编:龚昌德
  • 地址:南京汉口路22号南京大学(自然科学版)编辑部
  • 邮编:210093
  • 邮箱:xbnse@netra.nju.edu.cn
  • 电话:025-83592704
  • 国际标准刊号:ISSN:0469-5097
  • 国内统一刊号:ISSN:32-1169/N
  • 邮发代号:28-25
  • 获奖情况:
  • 中国自然科学核心期刊,中国期刊方阵“双效”期刊
  • 国内外数据库收录:
  • 美国化学文摘(网络版),美国数学评论(网络版),德国数学文摘,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:9316