在多尺度渐近展开式的基础上,讨论小周期复合材料弹性结构均匀化方程的各向异性混合元,给出了关于位移向量的L^2-模和应变张量的H(div)-模的误差估计.这种单元具有各向异性特征,解除了正则性条件的束缚,有较好的实用性.最后的数值结果验证了理论的正确性.
Based on the multi-scale asymptotic expansion, a mixed finite element method is discussed on anisotropic meshes. The method involves homogenization theory in small periodic elastic structure of composite materials. The error estimates in L2 -norm for displacement vector and H(div)- norm for strain tensor are derived. Relieving regularity assumption, this element is more practical. Finally, the numerical results validate the theoretical analysis.