针对欠定盲源分离中混合矩阵的估计问题,以及现有算法大多存在复杂度高、估计精度低的缺陷,在分析K-Plane算法的基础上,提出了一种改进的欠定混合矩阵估计算法——IK-Plane(improvedK-Plane)算法.IK-Plane算法通过最优化方法,计算与所有观测信号的内积和最小的向量,并将该向量作为新的法向量,改进了法向量的更新方法,从而改善了算法的时间复杂度及估计精度.实验结果表明:相对于K-Plane算法,IK-Plane算法在提高估计精度的同时,能够显著地降低算法的时间复杂度.
For the estimation of the mixing matrix in underdetermined blind source separation,most of the existing algorithms have the problem of high complexity and low estimation accuracy.Based on the analysis of K-Plane algorithm,an improved algorithm,called IK-Plane(improved K-Plane)algorithm,was proposed for the estimation of the mixing matrix.IK-Plane algorithm calculated the vector that has the minimum sum of inner product with all the observation signals,and viewed the vector as the new normal vector.The method was improved for updating the normal vector,so as to improve the time complexity of the algorithm and the estimation accuracy.The result shows that,compared to K-Plane algorithm,the IK-Plane algorithm can improve the estimation accuracy,while reduce the time complexity of the algorithm significantly.