基于非共线相位匹配的波面倾斜技术是目前采用飞秒激光产生超快太赫兹波最有效的手段,使用接触式光栅直接产生抽运飞秒脉冲的波面倾斜能够克服成像系统引入的畸变从而进一步提高该技术的效率。提出并利用简化的模态法设计了制备于铌酸锂晶体中用于波面倾斜技术产生高能量太赫兹波的内嵌式接触光栅。将Littrow角入射条件下的光栅衍射理论简化为光栅内双模式的干涉过程,极大地简化了光栅的参数设计。确定了满足波面倾斜条件的光栅常数,系统研究了衍射效率与光栅占空比和刻槽深度的关系,通过内嵌式光栅结构降低反射损耗,理论上能达到90%以上的-1级衍射效率,给出了合适的光栅加工参数。该系统设计方法对基于其他太赫兹波产生晶体的接触光栅设计具有参考意义。
Titled pulse front pumping (TPFP) based on non-collinear phase matching is the most efficient technique to generate ultrafast terahertz (THz) wave by femtosecond laser sources, and the use of a contact grating that can avoid aberrations caused by the imaging system has the potential of further improving the generation efficiency. An embedded contact grating fabricated inside the lithium niobate crystal is proposed for the TPFP scheme for the generation of high-energy THz radiation and designed by the simplified modal method. The grating diffraction under the Littrow mounting is simplified to a two-mode interference process, which greatly simplifies the grating design. The grating period is determined and the dependence of the diffraction efficiency on the fill factor and the groove depth of the grating is systematically explored. By reducing the reflection at the grating-crystal interface the embedded grating can achieve a diffraction efficiency larger than 90 % for the -- 1 diffraction order and the grating parameters are given. This systematic design procedure is applicable to the design of contact gratings based on other THz generation crystals.