位置:成果数据库 > 期刊 > 期刊详情页
基于统计特征的隐匿P2P主机实时检测系统
  • ISSN号:1001-9081
  • 期刊名称:《计算机应用》
  • 时间:0
  • 分类:TP393.06[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]国防科学技术大学计算机学院,长沙410073
  • 相关基金:国家自然科学基金资助项目(61170286).
中文摘要:

针对当前隐匿恶意程序多转为使用分布式架构来应对检测和反制的问题,为快速精确地检测出处于隐匿阶段的对等网络(P2P)僵尸主机,最大限度地降低其危害,提出了一种基于统计特征的隐匿P2P主机实时检测系统。首先,基于3个P2P主机统计特征采用机器学习方法检测出监控网络内的所有P2P主机;然后,再基于两个P2P僵尸主机统计特征,进一步检测出P2P僵尸主机。实验结果证明,所提系统能在5 min内检测出监控网内所有隐匿的P2P僵尸主机,准确率高达到99.7%,而误报率仅为0.3%。相比现有检测方法,所提系统检测所需统计特征少,且时间窗口较小,具备实时检测的能力。

英文摘要:

Since most malwares are designed using decentralized architecture to resist detection and countering, in order to fast and accurately detect Peer-to-Peer (P2P) bots at the stealthy stage and minimize their destructiveness, a real-time detection system for stealthy P2P bots based on statistical features was proposed. Firstly, all the P2P hosts inside a monitored network were detected using means of machine learning algorithm based on three P2P statistical features. Secondly, P2P bots were discriminated based on two P2P bots statistical features. The experimental results show that the proposed system is able to detect stealthy P2P bots with an accuracy of 99.7% and a false alarm rate below 0.3% within 5 minutes. Compared to the existing detection methods, this system requires less statistical characteristics and smaller time window, and has the ability of real-time detection.

同期刊论文项目
期刊论文 19 会议论文 10
同项目期刊论文
期刊信息
  • 《计算机应用》
  • 北大核心期刊(2011版)
  • 主管单位:四川省科学技术协会
  • 主办单位:四川省计算机学会中国科学院成都分院
  • 主编:张景中
  • 地址:成都市人民南路四段九号科分院计算所
  • 邮编:610041
  • 邮箱:xzh@joca.cn
  • 电话:028-85224283
  • 国际标准刊号:ISSN:1001-9081
  • 国内统一刊号:ISSN:51-1307/TP
  • 邮发代号:62-110
  • 获奖情况:
  • 全国优秀科技期刊一等奖,国家期刊奖提名奖,中国期刊方阵双奖期刊,中文核心期刊,中国科技核心期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:53679