主要研究半线性抛物方程ut=△u+V(x)|u|^p-1u爆破解的渐近行为.在本文中,假设N≥3并且1〈p〈N+2/N-2,初始值是有界的,V(x)∈C^1(R^N),且对任意x∈R^N存在常数c和C使得c≤V(x)≤C成立.则当t→T时,对R^N中的任意点a,(T-t)^1/p-1u(a+y√T-t,t)趋向于0或者±(β/V(a))^β,(β=1/p-1).
This paper studies the asymptotic behavior of the solution near blow-up for the semilinear parabolic equation ut=△u+V(x)|u|^p-1u in R^N × (0, T) with 0-Dirichlet condition. It assumes that,1〈p〈N+2/N-2 or N≤2 and that the initial data is bounded,and v(x)∈ C^1(R^N) with c≤V(x)≤C for some positive constantc, Candall x∈R^N t→T for any point a in R^N.