位置:成果数据库 > 期刊 > 期刊详情页
求解VLSI电路划分问题的混合粒子群优化算法
  • 期刊名称:软件学报
  • 时间:0
  • 页码:833-842
  • 语言:中文
  • 分类:TP301[自动化与计算机技术—计算机系统结构;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]福州大学数学与计算机私学学院,福建福州350108, [2]离散数学及其应用教育部重点实验室,福建福州350003, [3]Department of Computer Science, Georgia State University, Georgia 30303, USA
  • 相关基金:国家自然科学基金(10871221,61070020);国家重点基础研究发展计划(973)(2006cB805904,2011CB808000);福建省自然科学基金(A0820002,2009J01284);福建省科技创新平台计划(2009J1007)在此,我们感谢对本文研究工作提供有价值评论和修改建议的匿名审稿人.
  • 相关项目:超大规模集成电路多目标划分的算法研究
中文摘要:

电路划分是VLSI物理设计过程中的一个关键阶段.该问题本质上是一个NP困难的组合优化问题.针对该问题,提出了一种带FM策略的混合粒子群优化算法.引入遗传算法的两点交叉算子和随机两点交换变异算子,保证了粒子在位置更新后依然可行;为了提高算法的局部搜索能力,将具有较强局部搜索能力的FM策略融入算法的位置更新;设计了种群多样性变异策略,提高了种群多样性,避免了易陷入局部最优的缺陷.对ISCAS89标准测试电路的仿真实验结果表明,所构造的算法是有效的.

英文摘要:

Circuit partitioning is an important part of any very large scale integration (VLSI) physical design automation, but it is a NP-hard combinatorial optimization problem. In this paper, a hybrid particle swarm optimization algorithm with FM strategy is proposed to approch this problem. Inspired by the mechinism of genetic algorithm (GA), two-point crossover and random two-point exchange mutation operators have been designed to avoid generating infeasible solutions. To improve the ability of local exploration, FM strategy is applied to the proposed algorithm to update its position. A mutation strategy is also built into the proposed algorithm to achieve better diversity and break away from local optima. Experiments on ISCAS89 benchmark circuits show that the proposed algorithm is efficient.

同期刊论文项目
同项目期刊论文