运用三分量开边界Bariev模型的monodromy矩阵,T,T-1,U_,作用到真空态上的值、Yang-Baxter关系及反射方程,给出了该模型的基本对易关系式,并给出了模型的递推的多粒子态波函数,从而为进一步运用嵌套的代数Bethe ansatz方法求解该模型的多粒子解Bethe ansatz方程以及系统的能谱奠定了基础.
By using the action of the monodromy matrices T ,T^1 ,U. ,on the pseudo-vacuum state, the main fundamental commutation relations are obtained through the reflection equations and the reflection equations.Furthermore, thermore, the recursive n-particle state is given which play a crucial role for obtaining the n-particle solution and finding the Bethe ansatz equations, the eigenvalues of the transfer matrices and the energy spectrum of the system by means of the nested algebraic Bethe ansatz method.