位置:成果数据库 > 期刊 > 期刊详情页
基于ReliefF算法和相关度计算结合的故障特征降维方法及其应用
  • ISSN号:1000-4858
  • 期刊名称:《液压与气动》
  • 时间:0
  • 分类:TH137.7[机械工程—机械制造及自动化]
  • 作者机构:[1]燕山大学河北省重型机械流体动力传输与控制重点实验室,河北秦皇岛066004, [2]燕山大学先进锻压成形技术与科学教育部重点实验室,河北秦皇岛066004
  • 相关基金:基金项目:国家自然科学基金(51475405);国家重点基础研究发展计划(973计划)资助项目(2014CB046405);河北省自然科学基金(E2013203161)
中文摘要:

在对旋转机械进行故障诊断时,通常要从时域、频域或时频域提取故障特征参数,组成原始的故障特征向量,然而在众多的故障特征当中并不是每个特征对于故障分类都是敏感且有效的。为此,本研究提出了基于ReliefF算法和相关度计算结合的故障特征降维方法。采用ReliefF加权特征选择算法对原始各特征的分类能力进行评价,选择出分类能力较强的特征;再通过特征相关度算法剔除其中分类能力相近的冗余特征,将剩余的分类能力较强的特征组成最终的降维特征向量用于故障分类和诊断,实现原始特征的降维。通过液压泵和滚动轴承的故障诊断实验,并与传统的主元分析(PCA)方法对比,结果表明该方法能够用较少的降维后的信号特征获得更高的故障正确识别率。

英文摘要:

In the fault diagnosis of rotating machinery, the fault feature parameters are usually extracted from time domain, frequency domain or time-frequency domain. And the original fault feature vector is constituted by the ex- tracted feature parameters. However, among the numerous fault features, not every feature is sensitive and effective to fault classification. Hence, a fault feature dimension reduction method based on ReliefF algorithm and correlation calculation was proposed. In the mothed, the weighted ReliefF feature selection algorithm was utilized to evaluate the classification ability of original features and choose the features with strong classification ability. Then, the re- dundant features possessing similar classification ability were eliminated by feature correlation algorithm. And the feature vector was composed by the remaining features with strong classification ability and used for fault classifica-tion and diagnosis. Through the above approach, the dimension of original features was reduced. Moreover, the proposed method was applied to the fault diagnosis for hydraulic pump and rolling bearing. Comparing with the tra- ditional principal component analysis (PCA) method, the analysis results show that the proposed method can use fewer features after dimension reduction to obtain a higher correct recognition rate.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《液压与气动》
  • 中国科技核心期刊
  • 主管单位:中国机械工业联合会
  • 主办单位:北京机械工业自动化研究所
  • 主编:赵曼琳
  • 地址:北京市西城区德胜门外教场口1号
  • 邮编:100120
  • 邮箱:yqbjb@riamb.ac.cn
  • 电话:010-82285330
  • 国际标准刊号:ISSN:1000-4858
  • 国内统一刊号:ISSN:11-2059/TH
  • 邮发代号:2-828
  • 获奖情况:
  • 中国期刊方阵“双效”期刊,机械系统优秀期刊(三等奖)
  • 国内外数据库收录:
  • 中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:11455