设{Xn;n≥1}是一均值为0、方差有限的正相伴平稳序列.记Sn=sum Xk,Mn from k=1 to n =maxk≤n︱Sk︱,n≥1.证明了在一定条件下,由E︱X1︱p(︱X1︱1/α)〈∞可推出对任意的ε〉0,有sum npα-2-αh from n=1 to ∞ (n)E{Mn-εn1/p}+〈∞,其中h(n)为一在无穷处的缓变函数,{x}+=max{x,0}.
Let {Xn,n≥1} be a strictly stationary sequence of positively associated random variables with mean zero and finite variance.Set Sn=sum Xk,Mn from k=1 to n =maxk≤n︱Sk︱,n≥1,under some conditions,we show that E︱X1︱p(︱X1︱1/α)∞ implies for any ε0, sum npα-2-αh from n=1 to ∞ (n)E{Mn-εn1/p}+∞,where h(n) is a slowly varying function at infinity and {x}+=max{x,0}.