位置:成果数据库 > 期刊 > 期刊详情页
Feasibility of Trace Alcohol Congener Detection and Identification Using Laser-Induced Breakdown Spectroscopy
  • ISSN号:1009-0630
  • 期刊名称:《等离子体科学与技术:英文版》
  • 时间:0
  • 分类:O461[理学—电子物理学;理学—物理] TS207.51[轻工技术与工程—食品科学;轻工技术与工程—食品科学与工程]
  • 作者机构:Key Laboratory of Materials Modification by Laser, Ion and Electron Beams of Ministryof Education, School of Physics and Optoelectronic Technology, Dalian University ofTechnology, Dalian 116024, China
  • 相关基金:supported by National Natural Science Foundation of China(Nos.11475040,11375041); the Fundamental Research Funds for the Central Universities(No.DUT14ZD[G]04)
中文摘要:

In this paper,nitrogen dielectric barrier discharge(DBD) plasma was generated in a quartz tube with coaxial wire-cylinder electrodes at atmospheric pressure.By varying the nitrogen gas flow(FN) in the range of 0-1 m3/h,the plasma optical emission spectra(OES) were measured and studied.The vibration(Tvib) and rotation temperature(Trot) of nitrogen were obtained,by fitting the rovibronic bands of N2(C3∏u-B3∏g,0-1),and by the Boltzmann plot method for purposes of comparison.Tvib increased up to 2481 K with increasing nitrogen flow till0.2 m3/h,and then decreased with further increasing FN,while Trot decreased monotonously and approached to-350 K for FN ≥ 0.6 m3/h.The intensity of N2(C3∏u-B3∏g,0-0,1-0,0-3) and N2+(B2∑u+-X2Σg+,0-0) exhibited similar evolution with increasing FN to those of the Tvib and Trot,respectively.The discharge photos revealed that the discharge filaments gradually decreased with increasing FN,and eventually disappeared,which implied that a discharge mode transition emerged with increasing FN.The possible mechanism for the discharge mode transition is studied in detail according to the vibration(Tvib) and rotation temperature(Trot) of nitrogen.

英文摘要:

In this paper,nitrogen dielectric barrier discharge(DBD) plasma was generated in a quartz tube with coaxial wire-cylinder electrodes at atmospheric pressure.By varying the nitrogen gas flow(FN) in the range of 0-1 m3/h,the plasma optical emission spectra(OES) were measured and studied.The vibration(T_(vib)) and rotation temperature(T_(rot)) of nitrogen were obtained,by fitting the rovibronic bands of N_2(C~3∏_u-B~3∏_g,0-1),and by the Boltzmann plot method for purposes of comparison.T_(vib) increased up to 2481 K with increasing nitrogen flow till0.2 m3/h,and then decreased with further increasing FN,while Trot decreased monotonously and approached to-350 K for FN ≥ 0.6 m~3/h.The intensity of N_2(C~3∏_u-B~3∏_g,0-0,1-0,0-3) and N_2~+(B~2∑_u~+-X~2Σ_g~+,0-0) exhibited similar evolution with increasing FN to those of the T_(vib) and Trot,respectively.The discharge photos revealed that the discharge filaments gradually decreased with increasing FN,and eventually disappeared,which implied that a discharge mode transition emerged with increasing FN.The possible mechanism for the discharge mode transition is studied in detail according to the vibration(T_(vib)) and rotation temperature(T_(rot)) of nitrogen.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《等离子体科学与技术:英文版》
  • 主管单位:中国科学院 中国科协
  • 主办单位:中国科学院等离子体物理研究所 中国力学学会
  • 主编:万元熙、谢纪康
  • 地址:合肥市1126信箱
  • 邮编:230031
  • 邮箱:pst@ipp.ac.cn
  • 电话:0551-5591617 5591388
  • 国际标准刊号:ISSN:1009-0630
  • 国内统一刊号:ISSN:34-1187/TL
  • 邮发代号:
  • 获奖情况:
  • 国内外数据库收录:
  • 美国化学文摘(网络版),荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,美国科学引文索引(扩展库),英国科学文摘数据库
  • 被引量:89