位置:成果数据库 > 期刊 > 期刊详情页
基于多尺度细胞局部二值模式的人体检测
  • ISSN号:1673-629X
  • 期刊名称:计算机技术与发展
  • 时间:2012
  • 页码:52-56
  • 分类:TN912.35[电子电信—通信与信息系统;电子电信—信息与通信工程]
  • 作者机构:[1]东南大学水声信号处理教育部重点实验室,南京210096, [2]安徽大学智能计算与信号处理教育部重点实验室,合肥230601
  • 相关基金:The National Natural Science Foundation of China (No.61231002,61273266,51075068,60872073,60975017, 61003131); the Ph.D.Programs Foundation of the Ministry of Education of China(No.20110092130004); the Science Foundation for Young Talents in the Educational Committee of Anhui Province(No. 2010SQRL018); the 211 Project of Anhui University(No.2009QN027B)
  • 相关项目:基于图像亮度图空间可变去模糊的模糊图像拼接研究
中文摘要:

提出了一种基于机器学习的耳语音可懂度增强方法.该方法利用已经训练好的2类支持向量机来估计一个二元时频掩蔽值,进而合成增强后的耳语音.输入支持向量机的特征向量GFCCs是基于听觉外周模型进行提取的,具有噪声鲁棒特性.在增强仿真实验中,将该算法同传统语音增强算法进行语音可懂度增强性能比较.客观评价和主观听力实验结果均表明,所提出的方法能有效提高含噪耳语音的听觉可懂度;相比谱减法和log-MMSE方法在低信噪比时无法提高语音可懂度,该方法在低信噪比时仍可有效提高含噪耳语音的听觉可懂度.此外,含噪耳语音通过所提出的方法进行增强后,其可懂度比未增强时明显提高.

英文摘要:

A machine learning based speech enhancement method is proposed to improve the intelligibility of whispered speech. A binary mask estimated by a two-class support vector machine (SVM) classifier is used to synthesize the enhanced whisper. A novel noise robust feature called Gammatone feature cosine coefficients (GFCCs) extracted by an auditory periphery model is derived and used for the binary mask estimation. The intelligibility performance of the proposed method is evaluated and compared with the traditional speech enhancement methods. Objective and subjective evaluation results indicate that the proposed method can effectively improve the intelligibility of whispered speech which is contaminated by noise. Compared with the power subtract algorithm and the log-MMSE algorithm, both of which do not improve the intelligibility in lower signal-to-noise ratio (SNR) environments, the proposed method has good performance in improving the intelligibility of noisy whisper. Additionally, the intelligibility of the enhanced whispered speech using the proposed method also outperforms that of the corresponding unprocessed noisy whispered speech.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机技术与发展》
  • 中国科技核心期刊
  • 主管单位:陕西省工业和信息化厅
  • 主办单位:陕西省计算机学会
  • 主编:王守智
  • 地址:西安市雁塔路南段99号
  • 邮编:710054
  • 邮箱:ctad@vip.163.com
  • 电话:029-85522163
  • 国际标准刊号:ISSN:1673-629X
  • 国内统一刊号:ISSN:61-1450/TP
  • 邮发代号:52-127
  • 获奖情况:
  • 《CAJ-CD规范》执行优秀期刊
  • 国内外数据库收录:
  • 中国中国科技核心期刊
  • 被引量:21263