定义了一类序结构—FS-交连续domain,讨论其相关性质并证明:(1)FS-交连续domain关于由Scott连续且保持非空有限交运算的函数构成的函数空间封闭,以(代数)FS-交连续domain为对象、以Scott连续函数为态射的范畴是Cartesian闭范畴;(2)任意分配可乘的有界完备domain是FS-交连续domain,从而紧连续dcpo的Smyth幂domain是FS-交连续domain.这些结果表明,FS-交连续domain是关于保非空有限交的连续映射构成的函数空间封闭的最恰当序结构.
The authors define an order strvicture named as FS_∧-domain and investigate its(category) properties.It is shown that(1) FSVdomains are closed under the function spaces consisting of semilatticc liomomorphisms.i.e.,Scott continuous functions preserving meets;(2) Every distributive bounded complete domain which is multiplicative(about ) is an FS_∧-domain.Particularly,the Smyth powerdomain of a Lawson-compact continuous domain is an FS_∧-domain.These results show that the FS_∧-domain is the most suitable continuous semilatticc closed under the function spaces of semilatticc homomorphisms.