位置:成果数据库 > 期刊 > 期刊详情页
一种基于模糊度的聚类有效性函数
  • ISSN号:1003-6059
  • 期刊名称:《模式识别与人工智能》
  • 时间:0
  • 分类:TP391[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]西安理工大学计算机科学与工程学院,西安710048, [2]唐山学院计算中心,唐山063000, [3]陕西师范大学国际商学院,西安710062
  • 相关基金:国家自然科学基金资助项目(No.60501006)
中文摘要:

根据模糊集理论,结合模糊C-均值聚类算法的约束条件,提出聚类模糊集概念,定义聚类模糊度.通过深入分析聚类模糊集的模糊度和贴近度在聚类评价中的作用,设计出一种模糊聚类有效性函数,并给出应用该函数实现模糊C-均值聚类有效性判定的具体步骤.实验结果表明,本文提出的聚类有效性函数是合理的.

英文摘要:

Construction of cluster validity function is a commonly used method to determine the optimal partition and optimal number of clusters for fuzzy partitions. Based on the basic theory of fuzzy set, the notion of cluster fuzzy set is suggested, which is subjected to the constraint conditions of fuzzy C-means cluster algorithm. The cluster fuzzy degree and the lattice degree of approaching for cluster fuzzy set are defined and their functions in validation process of fuzzy clustering are deeply analyzed. A new cluster validity function is presented, in which two factors, the cluster fuzzy degree and the lattice degree of approaching, are taken into account comprehensively. Furthermore, the detailed steps are given to apply the cluster validity function to the clustering validity for the fuzzy C- means cluster algorithm. The experimental results indicate the effectiveness and robustness of the proposed cluster validity function.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《模式识别与人工智能》
  • 中国科技核心期刊
  • 主管单位:中国科学技术协会 中国自动化学会
  • 主办单位:国家智能计算机研究开发中心 中国科学院合肥智能机械研究所
  • 主编:郑南宁
  • 地址:安徽省合肥市蜀山湖路350号中国科学院合肥智能机械研究所
  • 邮编:230031
  • 邮箱:bjb@iim.cas.cn
  • 电话:0551-5591176
  • 国际标准刊号:ISSN:1003-6059
  • 国内统一刊号:ISSN:34-1089/TP
  • 邮发代号:26-69
  • 获奖情况:
  • 国内外数据库收录:
  • 被引量:10169