利用模糊点与模糊集之间的属于关系(∈)和拟重合关系(q)在R0-代数中引入了(λ,μ)-fuzzy滤子的概念,其中λ和μ是集合{∈,q,∈∨q,∈∧q}中的任意元素且λ≠∈∧q,并讨论它们的性质和相互关系;获得(∈,∈∨q)-fuzzy滤子的若干等价刻画;给出(∈,∈∨q)-fuzzy滤子成为(∈,∈)-fuzzy滤子以及一个模糊集成为(q,∈∨q)-fuzzy滤子的条件。
In this paper,the concepts of(λ,μ)-fuzzy filters are introduced in R0-algebras,where λ,μ are any two elements of {∈,q,∈∨q,∈∧q} with λ≠∈∧q,by using the belongs to relation (∈) and quasi-coincidence with relation(q) between fuzzy points and fuzzy sets.The relations among them are discussed;Someequivalent conditions of(∈,∈∨q)-fuzzy filters are obtained.The conditions of(∈,∈∨q)-fuzzy filters to be(∈,∈)-fuzzy filters and a fuzzy set to be a(q,∈∨q)-fuzzy filters are given.