针对大规模多输入多输出(LS-MIMO)系统最小均方误差(MMSE)检测算法计算复杂度高的问题,提出了基于经典迭代法的低复杂度信号检测算法,包括Jacobi迭代法、高斯-赛德尔迭代法和逐次超松弛迭代法.从精确解的近似值出发,在较少的迭代次数中可获得高效而精确的解,而且计算复杂度相比MMSE检测算法下降一个数量级.仿真结果表明,迭代检测算法经过有限的迭代能够达到近似MMSE检测算法的误码率性能.
For the high computational complexity problem of minimum mean square error( MMSE) detection algorithm on large scale-multiple input multiple output( LS-MIMO) systems,low complexity signal detection algorithm based on the classic iteration method was proposed,including the Jacobi iteration method,Gauss-Seidel iterative method and successive over relaxation iteration method. The proposed algorithm starts from the approximation of an exact solution,obtaining efficient and accurate solution in fewer iterations,and the computational complexity decline an order of magnitudes compared to MMSE detection algorithm. Simulation results show that the iterative detection algorithm can achieve bit error rate performance of approximate MMSE detection algorithm by limit iterations.