位置:成果数据库 > 期刊 > 期刊详情页
基于SOFM网络和异质信息融合的模拟电路诊断
  • ISSN号:1000-7180
  • 期刊名称:微电子学与计算机
  • 时间:0
  • 页码:160-164
  • 分类:TM131[电气工程—电工理论与新技术]
  • 作者机构:[1]湖南大学电气与信息工程学院,湖南长沙410082, [2]北京信息科技大学,北京100101
  • 相关基金:国家自然科学基金项目(60973032,60673084);湖南省自然科学基金重点项目(10JJ2045)
  • 相关项目:结合故障传播特性分析的模拟VLSI电路混合诊断方法
中文摘要:

大规模集成电路的发展使得传统的接触法测试在某些场合受到了限制.针对其造成的电量测试信息不足的问题,文中融合电量信息和非电量信息作为故障特征信息,应用自组织特征映射(SOFM)神经网络对模拟电路进行故障诊断.提取电路工作时的电压和温度信息作为故障特征信息,经预处理后作为样本输入给SOFM神经网络进行电路故障诊断.通过输出层各神经元的竞争,得到获胜神经元,从而对样本数据进行故障识别分类.仿真结果表明,应用所提融合诊断方法提高了诊断准确率.

英文摘要:

With the development of VLSI, conventional contact test is constrained in some occasions. Aiming at insufficient information of analog circuit electronic test, electronic and non--electronic information is combined as fault feature signature in the paper. Self--Organizing Feature Map (SOFM) Neural network is applied to analog circuit fault diagnosis. Voltage and temperature information is extracted as fault feature information, then processed, which is sent into neural network as input sample to detect circuit fault. Using the competition of output level neurons of SOFM, the winning neuron is attained and the fault recognition for sample data is classified. Simulation results show that fusion diagnosis has more satisfactory accuracy compared with single information diagnosis.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《微电子学与计算机》
  • 中国科技核心期刊
  • 主管单位:中国航天科技集团公司
  • 主办单位:中国航天科技集团公司第九研究院第七七一研究所
  • 主编:李新龙
  • 地址:西安市雁塔区太白南路198号
  • 邮编:710065
  • 邮箱:mc771@163.com
  • 电话:029-82262687
  • 国际标准刊号:ISSN:1000-7180
  • 国内统一刊号:ISSN:61-1123/TN
  • 邮发代号:52-16
  • 获奖情况:
  • 航天优秀期刊,陕西省优秀期刊一等奖
  • 国内外数据库收录:
  • 荷兰文摘与引文数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:17909