位置:成果数据库 > 期刊 > 期刊详情页
多特征描述及局部决策融合的人脸识别
  • ISSN号:1003-501X
  • 期刊名称:《光电工程》
  • 时间:0
  • 分类:TP391.4[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]合肥工业大学计算机与信息学院,合肥230009, [2]情感计算与先进智能机器安徽省重点实验室,合肥230009
  • 相关基金:国家自然科学基金重点资助项目(61432004);国家自然科学青年基金(61300119);安徽省自然科学基金项目(1408085MKL16)
中文摘要:

提出一种多特征描述及局部决策融合的人脸识别方法。首先利用独立成分分析算法构造全局互补子空间,对待测样本进行粗分类。然后利用三种不同定义的纹理描述算法构造局部互补子空间,获取粗分类难识别样本的后验概率值,最后依据其大小设置等级分数,得到待测样本在局部互补子空间上的精确分类。在 ORL、Yale 和FERET人脸库上的实验结果表明,本文方法能较好的描述图像特征且具有较高的识别率和较低的时间复杂度,与其他方法对比也表明了本文方法的有效性。

英文摘要:

A face recognition method is proposed based on multi features description and local fusion decision. Firstly, we use Independent Component Analysis (ICA) to construct the global complementary subspace to roughly classify the test samples. Then the texture descriptor algorithms under three different definitions are used to construct local complementary subspace to obtain the posterior probability of sample which is difficult to classify by rough classification. Finally, we get the precise classification result of test sample on the local complementary subspace through setting grade scores based on the value of the posterior probability. The experimental results on ORL, Yale and FERET face database show that the proposed method better describes characteristics of the image and has lower time complexity and higher recognition rate. Compared with other methods, it also proves its effectiveness on the face recognition.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《光电工程》
  • 中国科技核心期刊
  • 主管单位:中国科学院
  • 主办单位:中国科学院光电技术研究所 中国光学学会
  • 主编:罗先刚
  • 地址:四川省成都市双流350信箱
  • 邮编:610209
  • 邮箱:oee@ioe.ac.cn
  • 电话:028-85100579
  • 国际标准刊号:ISSN:1003-501X
  • 国内统一刊号:ISSN:51-1346/O4
  • 邮发代号:62-296
  • 获奖情况:
  • 四川省第二次期刊质量考评自然科学期刊学术类质量...,四川省第二届优秀期刊评选科技类期刊三等奖
  • 国内外数据库收录:
  • 美国化学文摘(网络版),荷兰文摘与引文数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:14003