通过白洽平均场理论计算,对对称AB两嵌段共聚物在均聚物C中形成的胶束进行了研究.在C对A、B组分没有选择性相互作用的情况下,我们观察到了两嵌段共聚物所形成的胶束形状为各向异性的、由间隔A/B层相区构成的类椭球结构.我们系统考察了胶束的长短径之比与胶束体积、组分问相互作用、均聚物长度之间的关系.结果表明,当固定组分间相互作用时,胶柬的长短径之比随体积变大而减小;当体积增大至一临界值,胶束层数增加,长短径之比发生突变并增大.给定胶束的结构和体积,增加两嵌段共聚物的不相容性,胶束长短径之比增加并且最终趋于平缓;当固定相互作用及胶束体积时。均聚物的长度越小.长短径之比越大.
The micelle formation of AB symmetric diblock copolymers in C homopolymers (or solvents) is studied by means of the calculations of the self-consistent field theory. Under the condition that C homopolymer has no preferential interaction for any of the two blocks, anisotropic ellipsoidal miceUes, which are composed of segmented layers of A/B do- mains with a normal direction along the major axis of ellipsoid, are observed. The length ratio, the ratio of the major axis of an ellipsoidal micelle to its minor axis, is used to quantify the extent of anisotropy. We systematically study the formation of a single micelle in our calculations, through focusing on the length ratio as functions of the volume of micelles, the A/B in- teractions as well as the length of homopolymer, instead of considering a huge system consisting of a number of micelles with variable volumes. Our results are presented through three main conclusions. First, with. fixed interactions, the length ratio ofmicelles decreases as increasing the micellar volume. When the micellar volume is raised to some critical extent, one more layer of A or B domains is added into the micelle, which leads to a sudden jump of the major axis, thereby inducing a corresponding increase of the length ratio. Second, for a given micellar stucture with fixed volume, the length ratio of micelle continuously rises up as adding the incompatibility of the two blocks. While the incompatibility rises up to high enough, the length ratio varies more mildly because the energy arising from the packing frustation has overwhelmed the interracial energy between block copolymers and homopolymers. Third, for a micelle with fixed interaction and volume, the length ratio in- creases as reducing the length of homopolymer. In a limit case of small molecule solvent, the length ratio goes up to an ex- tremely large value, thereby forming a worm-like micelle. Our results are of great interest for the understanding of the re- sponse of the micelles with segmented layers of A/B domains to envi