基于密度的最小生成树聚类算法,将最小生成树理论与基于密度的方法相结合,不仅体现了基于密度聚类方法的优点,而且聚类结果不依赖于用户参数的选择,聚类结果更合理,特别是对大数据集,算法非常有效。因此,本文在基于密度的MST聚类的基础上,通过减少数据集扫描次数以提高离群检测的效率。理论分析表明,检测算法可以有效地处理分布不均的数据集,适用于大规模数据集的挖掘。