位置:成果数据库 > 期刊 > 期刊详情页
混合Markov与Bayes的客户欠费预测模型
  • ISSN号:1000-1565
  • 期刊名称:《河北大学学报:自然科学版》
  • 时间:0
  • 分类:TP301[自动化与计算机技术—计算机系统结构;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]南昌大学科学技术学院,南昌330029, [2]南昌大学科学信息工程学院,南昌330029
  • 相关基金:国家自然科学基金(61463033); 南昌大学科技学院基金项目(2014-JG-04)、南昌大学科技学院精品课程项目(2013JPKC020)资助
中文摘要:

在进行数据库访问的过程中,由于受到很多不确定性因素的干扰,使数据库中存在大量噪声,影响了数据库访问的效率。提出一种引入高阶累积量的数据库访问特征选择算法,依据高阶累积量两个统计独立随机过程之和的累积量等于各个随机过程累积量之和的性质,对数据库进行去噪处理。在此基础上,采用SVM无监督算法实现数据库访问特征选择。仿真实验结果表明,采用所提算法进行数据库访问特征选择,不仅具有较高的特征选择精度,而且特征选择效率也明显高于传统算法,同时特征选择结果所含冗余特征低于传统算法,验证了所提算法在数据库访问特征选择方面的性能。

英文摘要:

In the process of the database access, due to the interference of many uncertain factors, there are a lot of noise in the database, which would influence the efficiency of database access, and put forward a kind of in- troduction of high-order cumulant database access feature selection algorithm. Based on higher order cumulants of the sum of two statistically independent random process cumulant is equal to the sum of the stochastic process cumu- lant, the nature of the database to deal with the noise, on this basis, using the SVM unsupervised algorithm data- base access feature selection. The simulation results show that the proposed algorithm for database access feature selection, not only has higher precision of feature selection, and also significantly higher than that of traditional al- gorithm, feature selection efficiency and feature selection results contain redundancy feature is lower than the tradi- tional algorithm. The proposed algorithm is verified in the database access feature selection in terms of performance.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《河北大学学报:自然科学版》
  • 北大核心期刊(2011版)
  • 主管单位:河北省教育厅
  • 主办单位:河北大学
  • 主编:傅广生
  • 地址:保定市五四东路180号
  • 邮编:071002
  • 邮箱:hbdxxbz@hbu.edu.cn
  • 电话:0312-5079413
  • 国际标准刊号:ISSN:1000-1565
  • 国内统一刊号:ISSN:13-1077/N
  • 邮发代号:18-257
  • 获奖情况:
  • 2008年10月荣获第二届中国高校优秀科技期刊奖,2008年荣获2006-2007年度河北省优秀科技期刊奖,2009年8月被河北省教育厅命名为2004-2008年度河北...,2009年8月在中国北方优秀期刊评选活动中被评为"中...,2009年10月荣获2009年全国高校科技期刊优秀编辑质量奖,2010年10月荣获第三届中国高校优秀科技期刊奖
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国化学文摘(网络版),美国数学评论(网络版),美国剑桥科学文摘,英国动物学记录,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),英国英国皇家化学学会文摘
  • 被引量:5593