研究由具有一个参数紧支撑的博雷尔概率测度族构成的调和分析中的伯努利测度μλ(λ∈(0,1))的性质.针对给定的λ,考虑在Lμ^2λ空间中的正交指数函数系的最大化与极大化.通过对Γ和μλ零点的分析,证明E(pΓ(1/8))(p是奇数)是L^2μ8p空间的最大正交指数函数系.
The research is about the harmonic analysis of Bernoulli measures μλwhich is a one parameter system of compact supported Broel probably measures on R.For a given λ.The maximal family and the Fourier bases in L^2(μλ)are studied.It has been proved that E(pΓ18)(p is an odd)are the maximal orthogonal exponentials in L^2(μp8).