位置:成果数据库 > 期刊 > 期刊详情页
核监督鉴别投影分析在人脸识别中的应用
  • ISSN号:1000-7180
  • 期刊名称:《微电子学与计算机》
  • 时间:0
  • 分类:TP391[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]扬州大学信息工程学院,江苏扬州225009
  • 相关基金:国家自然科学基金项目(60875004);江苏省高校自然科学基础研究项目(07KJB520133)
中文摘要:

提出一种核监督鉴别投影分析方法.首先将训练样本通过一个核函数非线性映射到特征空间,在该特征空间分别计算样本的局部、非局部和类内离散度,设计了一个改进的鉴别准则函数,基于该准则获得一组最优投影轴,使得投影后的样本不仅保留局部邻域信息,而且能够抽取更有利分类的非线性鉴别特征.在Yale人脸数据库上的实验结果表明:文中方法有效且性能优于Fisher线性鉴别分析和非监督鉴别投影分析方法.

英文摘要:

This paper develops a new method called kernel supervised discrirninant projection analysis. It firstly maps the training samples into a feature space via a nonlinear mapping determined by a kernel function, and then respectively computes the local scatter, nonlocal scatter and within - class scatter in feature space, and thus designs an improved discriminant criterion function, and simultaneously we obtain a set of optimal projection axes, which not only make the projected samples preserve the local neighborhood information, but extract the nonlinear diseriminant characteristics for effective classification. The experimental results on Yale face image database show that the proposed method is effective and outperforms the Fisher linear diseriminant analysis and unsupervised discriminant analysis method.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《微电子学与计算机》
  • 中国科技核心期刊
  • 主管单位:中国航天科技集团公司
  • 主办单位:中国航天科技集团公司第九研究院第七七一研究所
  • 主编:李新龙
  • 地址:西安市雁塔区太白南路198号
  • 邮编:710065
  • 邮箱:mc771@163.com
  • 电话:029-82262687
  • 国际标准刊号:ISSN:1000-7180
  • 国内统一刊号:ISSN:61-1123/TN
  • 邮发代号:52-16
  • 获奖情况:
  • 航天优秀期刊,陕西省优秀期刊一等奖
  • 国内外数据库收录:
  • 荷兰文摘与引文数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:17909