位置:成果数据库 > 期刊 > 期刊详情页
一种基于强化学习的ART2神经网络——RL-ART2
  • ISSN号:1003-6059
  • 期刊名称:《模式识别与人工智能》
  • 时间:0
  • 分类:TP181[自动化与计算机技术—控制科学与工程;自动化与计算机技术—控制理论与控制工程]
  • 作者机构:[1]上海大学电站自动化技术重点实验室,上海200072, [2]南京陆军指挥学院作战实验中心,南京210045
  • 相关基金:国家自然科学基金资助项目(No.60774059)
中文摘要:

提出一种基于强化学习的ART2神经网络(RL-ART2),使其利用强化学习的特性通过与环境交互而无需训练样本即可进行在线学习,同时给出该神经网络的学习算法.当ART2神经网络运行时,通过内部竞争学习得到输出的分类模式,随后通过与环境交互得到神经网络分类模式的运行效果并对其进行评价.通过这种不断与环境的交互学习,当经过在线学习足够的时间和次数后,ART2神经网络即具有相当的识别率.移动机器人路径规划仿真实验表明,使用RL-ART2后与未使用前相比大大减少了机器人与障碍物的碰撞次数,实践证明该方法的合理性和有效性.

英文摘要:

A reinforcement learning based ART2 neural network ( RL -ART2 ) is proposed and its learning algorithm is given. It is capable of online learning without training samples by using the characteristic of alteration with environment of reinforcement learning. In RL-ART2, the output classified pattern is got by inner competition of ART2, then the running effect of the classified pattern is gained and evaluated through altering with environment. With enough time of being online and interactive learning with environment, a certain recognition ratio of ART2 neural network is attained. The simulation results of path planning for mobile robot indicate that the collision times of robot is effectively decreased by using RL-ART2 . Moreover, the rationality and validity of RL-ART2 are also demonstrated by the results.

同期刊论文项目
期刊论文 45 会议论文 24 获奖 6 专利 4
同项目期刊论文
期刊信息
  • 《模式识别与人工智能》
  • 中国科技核心期刊
  • 主管单位:中国科学技术协会 中国自动化学会
  • 主办单位:国家智能计算机研究开发中心 中国科学院合肥智能机械研究所
  • 主编:郑南宁
  • 地址:安徽省合肥市蜀山湖路350号中国科学院合肥智能机械研究所
  • 邮编:230031
  • 邮箱:bjb@iim.cas.cn
  • 电话:0551-5591176
  • 国际标准刊号:ISSN:1003-6059
  • 国内统一刊号:ISSN:34-1089/TP
  • 邮发代号:26-69
  • 获奖情况:
  • 国内外数据库收录:
  • 被引量:10169