提出了一种微型光谱仪,该微型光谱仪基于法布里-珀罗腔滤波性的阵列式微型光谱仪。其基本结构是在硅基底上实现多个不同腔长的阵列,从而实现对多个波长的监测。探测单元即为一个法布里-珀罗腔,由硅基底-金属薄膜-二氧化硅层-金属薄膜构成。进行了相应的模拟计算,结果表明在基本结构为铝膜(14nm)~SiO2-银膜(39nm)的情况下,通带半宽度可达到15nm,单个探测单元面积仅为0.14mm×0.14mm即可达到微型光栅式光谱仪(最小体积在cm量级)的光通量,整个光谱探测部分体积仅在mm量级。该微型光谱仪设计尺寸在几个mm的量级、无活动部件,可以同时对多个波长进行检测,并可望利用现有IC加工手段实现光谱仪传感器化。
This paper advances a kind of micro-spectrometer based on Fabry-Perot cavity's character of filtering the waves. The basic structure of the micro-spectrometer is the array of Fabry-Perot cavity which contains many different lengths of cavity on the substrate of silicon, consequently the authors can achieve the detection at several wavelengths simultaneously. The unit of probing is a Fabry-Perot cavity made up of the substrate of silicon-metal film-silicon dioxide layer-metal film. The authors carried out the corresponding simulation. In the basic structure of aluminum film(14 nm)-silicon dioxide layer-silver film(39 nm), the resolution can reach 15 nm. When the area of a unit of probing is 0.14 min×0.14 mm only, it can reach the luminous flux of miniature grating spectrum instrument(the minimum volume in the order of cm), but the volume of the part of spectrum detection is only of the order of mm. The design size of the micro-spectrometer is a few millimeters. Furthermore it has no movable parts and could detect several wavelengths at the same time. It is possible to fabricate such micro-spectrometer through existing processing methods of IC technology.