为研究直流电弧等离子体点火器的化学效应,测量了点火器喷出的等离子体射流的发射光谱,分析得到等离子体射流与常压环境空气相互作用产生的粒子种类,通过烟气分析仪定量测量了距离点火器出口8cm处的NO和CO含量,并研究了点火器弧电流、工作介质流量对NO和CO体积分数的影响。实验结果表明:等离子体点火器喷出的等离子体射流与环境空气相互作用可产生活性粒子H,O和N,带电粒子O2+,N2+和激发态粒子N2(A3),N2(B3),N2(C3)和O2(b1)等;增大弧电流、工作介质流量,等离子体射流头部附近NO和CO体积分数增大。
To study the chemical effect of direct current arc plasma igniter, the emission spectrum of plasma jet was measured, and the active particles produced by the interaction of plasma jet with atmospheric air were analyzed. The NO and CO volume fractions were measured quantificationally by smoke analyzer at the 8cm downstream the plasma igniter exit, and the changing law between arc current and NO, CO volume fractions was obtained. The results show that the plasma jet interacting with atmospheric air produced active particles (H, O, N), charged particles(O2 +, N2 +), and excited particles(N2 (A3), N2 (B3), N2 (C3), N2 (al), O2 (al), 02 (bl)). The NO and CO volume fractions increased with rising of arc current and feedstock argon flow rate.