位置:成果数据库 > 期刊 > 期刊详情页
改进的自适应衰减卡尔曼滤波算法
  • ISSN号:1671-4598
  • 期刊名称:《计算机测量与控制》
  • 时间:0
  • 分类:U666.1[交通运输工程—船舶及航道工程;交通运输工程—船舶与海洋工程]
  • 作者机构:哈尔滨工程大学自动化学院,哈尔滨150001
  • 相关基金:国家自然科学基金(51379042);中央高校基本科研业务费专项资金(heucfq1404).
中文摘要:

SINS/GPS组合导航系统的融合算法主要是卡尔曼滤波,卡尔曼滤波实现最优估计的前提是系统的模型和随机噪声信息必须准确已知;实际情况下,大部分系统的模型和随机噪声信息不完全可知,这可能会导致滤波器估计精度下降;针对这一问题,根据求解遗传因子的方法不同对传统的自适应衰减卡尔曼滤波进行改进,提出一种改进的自适应衰减卡尔曼滤波;改进后的算法分别适用于系统噪声统计模型不准确可知和量测噪声统计模型不准确可知两种情况,分别对应于两种滤波算法,并且二者具有统一的滤波框架;仿真结果表明,改进的自适应衰减卡尔曼滤波比卡尔曼滤波精度较高,有效解决了因为噪声模型不准确导致的精度下降问题。

英文摘要:

The fusion algorithm of SINS/GPS integrated navigation system is mainly based on Kalman filter. Kalman filter is the optimal estimation on the conditions that system model and random noise information are accurately known. In practice, most system model and ran- dom noise information are not completely known, which may lead to filter estimation accuracy decline. Aiming at this problem, this paper im- proves the traditional adaptive fading Kalman filter according to the method of solving forgetting factor, and proposes an improved adaptive fading Kalman filter. The improved algorithm respectively applies in the cases that system noise statistical model cannot be accurately known and measurement noise statistical models cannot be accurately known, respectively corresponding to the two filter algorithms. What' s more, they have a unified filter framework. The simulation results show that the improved adaptive fading Kalman filter is more accurate than Kalman filter and it can effectively solves the accuracy decline problem caused by the inaccurate noise model.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机测量与控制》
  • 北大核心期刊(2011版)
  • 主管单位:中国航天科工集团公司
  • 主办单位:中国计算机自动测量与控制技术协会
  • 主编:苟永明
  • 地址:北京海淀区阜成路甲8号中国航天大厦405
  • 邮编:100048
  • 邮箱:ly@chinamca.com
  • 电话:010-68371578 68371556
  • 国际标准刊号:ISSN:1671-4598
  • 国内统一刊号:ISSN:11-4762/TP
  • 邮发代号:82-16
  • 获奖情况:
  • 中国学术期刊综合评价数据库来源期刊,中国科技论文统计源期刊,“国家期刊奖百种重点期刊”
  • 国内外数据库收录:
  • 美国剑桥科学文摘,英国科学文摘数据库,中国中国科技核心期刊,中国北大核心期刊(2008版),中国北大核心期刊(2011版)
  • 被引量:27924