位置:成果数据库 > 期刊 > 期刊详情页
基于LDA的社会化标签系统推荐技术
  • ISSN号:1000-7024
  • 期刊名称:《计算机工程与设计》
  • 时间:0
  • 分类:TP301.6[自动化与计算机技术—计算机系统结构;自动化与计算机技术—计算机科学与技术]
  • 作者机构:华南农业大学数学与信息学院,广东广州510642
  • 相关基金:国家自然科学基金项目(71472068); 广东省科技计划基金项目(2013B020314013); 国家星火计划基金项目(2014GA780048)
中文摘要:

标签推荐中采用将三维模型拆分成多个二元关系的方法,导致用户信息的描述模糊、语义丢失、标签的个性化信息减弱问题,提出一种基于LDA模型的个性化标签推荐模型(LTR)。使用LDA模型的吉布斯采样算法对参数进行估计,利用模型输出的概率关系进行排序,选取最高的N个预测结果作为最终的个性化推荐。以CiteULike数据集为研究对象,实验结果表明,该模型考虑了具有丰富语义信息的摘要文本,发挥了涵盖用户意识的个性化标签作用来增强推荐的准确性,有效为用户推荐个性化标签,提高了推荐效果。

英文摘要:

To solve the problem of the fuzzy description of user information,semantic loss and the weakening of personalized information of tag,which were caused by splitting 3D model into multiple two element methods,apersonalized tag recommendation model based on subject model was proposed.The Gibbs sampling algorithm of LDA model was used to estimate the parameters.The probability of model output was used to sort.The highest N prediction results were selected as the final personalized recommendation.Taking the CiteULike data set as the research object,experimental results show that the model considers the rich semantic information,and increases the accuracy of the recommendation.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机工程与设计》
  • 北大核心期刊(2011版)
  • 主管单位:中国航天科工集团
  • 主办单位:中国航天科工集团二院706所
  • 主编:汤铭瑞
  • 地址:北京142信箱37分箱
  • 邮编:100854
  • 邮箱:ced@china-ced.com
  • 电话:010-68389884
  • 国际标准刊号:ISSN:1000-7024
  • 国内统一刊号:ISSN:11-1775/TP
  • 邮发代号:82-425
  • 获奖情况:
  • 中国科学引文数据库来源期刊,中国学术期刊综合评价数据库来源期刊,中国科技论文统计与分析用期刊
  • 国内外数据库收录:
  • 波兰哥白尼索引,美国剑桥科学文摘,英国科学文摘数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版)
  • 被引量:45616