针对高速柔性转子支承松动的结构特征、力学特征以及多支点转子系统动力学设计的需要,研究了转子支承结构松动引起支承刚度非连续变化的产生机理,建立了支承松动转子系统动力学模型,分析了支承松动转子系统存在混沌运动的条件,即当转子动力特性对支承刚度变化敏感时,受支承刚度阶跃影响,支承松动转子系统会产生混沌运动。根据多支点转子系统动力学特性与支承结构位置、刚度的相关性,采用优化支承位置和支承刚度的方法,使转子动力特性对支承刚度非连续变化不敏感,为多支点高速柔性转子系统的动力学优化设计提供了设计途径。
Based on analysis of the structural and mechanical characteristics of the bearing with looseness on high-speed flexible rotor and the demand of dynamic optimal design for multi-supported flexible rotor,the mechanism of non-straight change of stiffness of supporting structure caused by looseness on rotor-bearing system was researched. Then a dynamic model of rotor-bearing system with looseness was developed. The generation conditions of chaos were analyzed. According to the analysis,the rotor will produce chaotic motion by the impact of the step change in stiffness when the dynamics of the rotor is sensitive to the stiffness of supporting structure. Based on the relationship of dynamics of the rotor and position and stiffness of supporting structure,the optimization design of the position and stiffness of supporting structure can control the sensitivity of rotor dynamic characteristics to the stiffness of the support,which can provide design method for dynamics optimization design for multi-supported high-speed flexible rotor.