位置:成果数据库 > 期刊 > 期刊详情页
基于节点相似度的社团发现算法
  • ISSN号:1000-7024
  • 期刊名称:《计算机工程与设计》
  • 时间:0
  • 分类:TP311[自动化与计算机技术—计算机软件与理论;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]安徽工业大学计算机学院,安徽马鞍山243032
  • 相关基金:国家自然科学基金项目(61003311);安徽高校省级自然科学研究基金项目(KJ2011A039)
中文摘要:

对现有的社会网络社团发现算法进行研究,发现存在算法时间复杂度高、准确率低和没有充分利用节点属性信息等问题,提出了一种基于节点相似度的社团发现算法以解决这些问题。综合考虑图的拓扑结构和节点属性信息,结合构造属性扩展图的思想和基于结构情境相似度的思想得到节点的相似度,利用改进的K-means算法对所有节点进行聚类得到社团结构。编程实验结果表明,使用该算法得到的社团准确率较高,算法的时间复杂度为线性的,在带属性的数据集上和不带属性的数据集上的测试结果均验证了算法的有效性。

英文摘要:

With study of the existing community detection algorithms in social networks, problems of high time complexity, low accuracy rate and the neglect of node attributes information are found, and a new community detection algorithm based on node similarity is presented to solve it. The algorithm takes composite factor of topological structure and node attributes into account. At first, the idea of constructing attribute augmented graph with attribute nodes gained from node attributes, and calculating nodes similarity based on graph structure are used together to gain node similarity. And then, an improved K-means algorithm based on node similarity is proposed to cluster nodes to detect implied communities. Through programming realization, higher accuracy rate and a linear time complexity are showed in final experimental results. The effectiveness of the algorithm is verified on an artificial two community dataset with attributes and two standard datasets without attributes.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机工程与设计》
  • 北大核心期刊(2011版)
  • 主管单位:中国航天科工集团
  • 主办单位:中国航天科工集团二院706所
  • 主编:汤铭瑞
  • 地址:北京142信箱37分箱
  • 邮编:100854
  • 邮箱:ced@china-ced.com
  • 电话:010-68389884
  • 国际标准刊号:ISSN:1000-7024
  • 国内统一刊号:ISSN:11-1775/TP
  • 邮发代号:82-425
  • 获奖情况:
  • 中国科学引文数据库来源期刊,中国学术期刊综合评价数据库来源期刊,中国科技论文统计与分析用期刊
  • 国内外数据库收录:
  • 波兰哥白尼索引,美国剑桥科学文摘,英国科学文摘数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版)
  • 被引量:45616