针对传统深度学习算法在样本不足时易出现过拟合的问题,提出了一类新的小样本深度学习模型:UGES反向传导模型。其基本思路是:在保留深层结构的同时,压缩需要学习参数的数量。作为一种与误差反向传导算法相容的间接编码模型,该算法对权值的随机分布特性进行重新编码,打破了不同隐含层之间的隔阂,并使用变分贝叶斯学习对网络进行全局训练。新模型的参数数目不再与输入变量维数及网络结构大小相关,同时强迫权值对于一定程度的扰动具有鲁棒性。最后,将所提出的算法用于外包软件项目风险识别这一典型的多维小样本问题中。对比实验表明,该模型达到了93.3%的样本外准确率,不仅保留了深度模型非线性表达能力,亦具备了小样本下优秀的泛化能力。
Original deep neural networks are prone to over-fit when the size of training examples To address this problem, a new efficient deep machine learning algorithm is proposed for small learning. The basic idea is to compress the number of parameters tO be learned while retaining structure. To achieve this, a back-prop compatible encoding scheme (i. e. UGES Back-prop is small. sample the deep ) is pro-