位置:成果数据库 > 期刊 > 期刊详情页
基于激光诱导击穿光谱的合金钢组分偏最小二乘法定量分析
  • ISSN号:1000-0593
  • 期刊名称:光谱学与光谱分析
  • 时间:2014
  • 页码:542-547
  • 分类:TP75[自动化与计算机技术—控制科学与工程;自动化与计算机技术—检测技术与自动化装置] TN24[电子电信—物理电子学]
  • 作者机构:[1]Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China, [2]University of Chinese Academy of Sciences, Beijing 100049, China, [3]CAS Key Laboratory of Networked Control System, Shenyang 110016, China
  • 相关基金:supported by the National High Technology Research and Development Program of China (863 Program) (No. 2012AA040608), National Natural Science Foundation of China (Nos. 61473279, 61004131) and the Development of Scientific Research Equipment Program of Chinese Academy of Sciences (No. YZ201247)
  • 相关项目:基于激光诱导击穿光谱的无标定量化成分在线检测方法研究
中文摘要:

Principal component analysis(PCA) combined with artificial neural networks was used to classify the spectra of 27 steel samples acquired using laser-induced breakdown spectroscopy. Three methods of spectral data selection, selecting all the peak lines of the spectra,selecting intensive spectral partitions and the whole spectra, were utilized to compare the influence of different inputs of PCA on the classification of steels. Three intensive partitions were selected based on experience and prior knowledge to compare the classification, as the partitions can obtain the best results compared to all peak lines and the whole spectra. We also used two test data sets, mean spectra after being averaged and raw spectra without any pretreatment, to verify the results of the classification. The results of this comprehensive comparison show that a back propagation network trained using the principal components of appropriate, carefully selected spectral partitions can obtain the best results. A perfect result with 100% classification accuracy can be achieved using the intensive spectral partitions ranging of 357-367 nm.

英文摘要:

Principal component analysis (PCA) combined with artificial neural networks was used to classify the spectra of 27 steel samples acquired using laser-induced breakdown spectroscopy. Three methods of spectral data selection, selecting all the peak lines of the spectra, selecting intensive spectral partitions and the whole spectra, were utilized to compare the infiuence of different inputs of PCA on the classification of steels. Three intensive partitions were selected based on experience and prior knowledge to compare the classification, as the partitions can obtain the best results compared to all peak lines and the whole spectra. We also used two test data sets, mean spectra after being averaged and raw spectra without any pretreatment, to verify the results of the classification. The results of this comprehensive comparison show that a back propagation network trained using the principal components of appropriate, carefully selecred spectral partitions can obtain the best results accuracy can be achieved using the intensive spectral A perfect result with 100% classification partitions ranging of 357-367 nm.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《光谱学与光谱分析》
  • 中国科技核心期刊
  • 主管单位:中国科学技术协会
  • 主办单位:中国光学学会
  • 主编:高松
  • 地址:北京海淀区魏公村学院南路76号
  • 邮编:100081
  • 邮箱:chngpxygpfx@vip.sina.com
  • 电话:010-62181070
  • 国际标准刊号:ISSN:1000-0593
  • 国内统一刊号:ISSN:11-2200/O4
  • 邮发代号:82-68
  • 获奖情况:
  • 1992年北京出版局编辑质量奖,1996年中国科协优秀科技期刊奖,1997-2000获中国科协择优支持基础性高科技学术期刊奖
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国化学文摘(网络版),荷兰文摘与引文数据库,美国工程索引,美国生物医学检索系统,美国科学引文索引(扩展库),英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),英国英国皇家化学学会文摘,中国北大核心期刊(2000版)
  • 被引量:40642