位置:成果数据库 > 期刊 > 期刊详情页
两输入幂激励前向神经网络权值与结构确定
  • ISSN号:1002-8331
  • 期刊名称:《计算机工程与应用》
  • 时间:0
  • 分类:TP183[自动化与计算机技术—控制科学与工程;自动化与计算机技术—控制理论与控制工程]
  • 作者机构:[1]中山大学信息科学与技术学院,广州510006, [2]中山大学深圳研究院,广东深圳518057
  • 相关基金:国家自然科学基金(No.61075121,No.60935001); 中央高校基本科研业务费专项资金
中文摘要:

基于多元函数逼近与二元幂级数展开理论,构建了一个以二元幂函数序列为隐神经元激励函数的两输入幂激励前向神经网络模型。以该网络模型为基础,基于权值直接确定法以及隐神经元数目与逼近误差的关系,提出了一种网络权值与结构确定算法。计算机仿真与数值实验结果验证了所构建的网络在逼近与去噪方面具有优越的性能,所提出的权值与结构确定算法能够快速、有效地确定网络的权值与最优结构,保证网络的最佳逼近能力。

英文摘要:

Based on the theory of multivariate function approximation and two-variable power series expansion, a Two-Input Power-Activation feed-forward Neural Network(TIPANN)model is constructed and studied, of which the hidden-layer neurons’activation-functions are a sequence of power functions with two variables. Moreover, based on the weights-direct-determination method and the relationship between the number of hidden-layer neurons and the neural network’s approximation error, a Weights-And-Structure-Determination(WASD)algorithm is pro- posed to determine the optimal number of hidden-layer neurons of the TIPANN. Computer simulation and numerical verification results further substantiate the superiority of the TIPANN in terms of approximation and denoising, as well as the efficacy and accuracy of the proposed WASD algorithm to determine the weights and the optimal structure of the TIPANN.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机工程与应用》
  • 北大核心期刊(2014版)
  • 主管单位:中国电子科技集团公司
  • 主办单位:华北计算技术研究所
  • 主编:怀进鹏
  • 地址:北京市海淀区北四环中路211号北京619信箱26分箱
  • 邮编:100083
  • 邮箱:ceaj@vip.163.com
  • 电话:
  • 国际标准刊号:ISSN:1002-8331
  • 国内统一刊号:ISSN:11-2127/TP
  • 邮发代号:82-605
  • 获奖情况:
  • 1. 2012年首批获得中国学术文献评价中心发布的 “...,2. 2001年获得新闻出版署“中国期刊方阵双效期刊”,3. 2008年首批入选国家科技部“中国精品科技期刊...,4.2003年-2011年连续获得工业和信息化部期刊最高...
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:97887