建立双排行星齿轮传动系统的计算模型,并针对其进行静态均载特性行为的理论研究。模型中考虑各级行星齿轮的偏心误差,静态传递误差,时变啮合刚度等参数,并利用傅里叶级数法求解系统载荷平衡方程。定性地研究行星轮的偏心误差,齿圈的支撑刚度,行星轮的支撑刚度以及一级行星架的扭转刚度等参数对系统静态均载特性行为的影响,并据此得到一些理论分析结果。该研究延伸和扩展了对双排行星轮系均载特性行为的认识,并为进一步进行动力学均载行为的理论和实验研究形成一定的基础,同时也为双排行星轮系的设计提供一定的参考。
A new model for analyzing the static load sharing characteristics of double-row planetary gear set was proposed, and planet’s eccentricity error, static transmission error, and time-varying meshing stiffness were taken into consideration. The equilibrium equations were determined by the method of Fourier series, and the behavior of static load sharing characteristics affected by the system parameters including gear eccentricity error, ring gear’s supporting stiffness, planet’s bearing stiffness and torsional stiffness of first stage carrier were investigated quantitatively. Theoretical analysis extends our current understanding of behavior of static load sharing characteristics, forms the basis of further theoretical and experimental research, and provides guidelines for the designing of the double-row planetary gear transmission system.