位置:成果数据库 > 期刊 > 期刊详情页
Adaptive partition intuitionistic fuzzy time series forecasting model
  • ISSN号:1004-4132
  • 期刊名称:《系统工程与电子技术:英文版》
  • 时间:0
  • 分类:N945[自然科学总论—系统科学]
  • 作者机构:[1]Air and Missile Defense College, Air Force Engineering University, Xi’an 710051, China
  • 相关基金:This work was supported by the National Natural Science Foundationof China (61309022).
中文摘要:

To enhance the accuracy of intuitionistic fuzzy time series forecasting model, this paper analyses the influence of universe of discourse partition and compares with relevant literature.Traditional models usually partition the global universe of discourse, which is not appropriate for all objectives. For example,the universe of the secular trend model is continuously variational.In addition, most forecasting methods rely on prior information, i.e.,fuzzy relationship groups (FRG). Numerous relationship groups lead to the explosive growth of relationship library in a linear model and increase the computational complexity. To overcome problems above and ascertain an appropriate order, an intuitionistic fuzzy time series forecasting model based on order decision and adaptive partition algorithm is proposed. By forecasting the vector operator matrix, the proposed model can adjust partitions and intervals adaptively. The proposed model is tested on student enrollments of Alabama dataset, typical seasonal dataset Taiwan Stock Exchange Capitalization Weighted Stock Index (TAIEX) and a secular trend dataset of total retail sales for social consumer goods in China. Experimental results illustrate the validity and applicability of the proposed method for different patterns of dataset.

英文摘要:

To enhance the accuracy of intuitionistic fuzzy time series forecasting model, this paper analyses the influence of universe of discourse partition and compares with relevant literature. Traditional models usually partition the global universe of discourse, which is not appropriate for all objectives. For example, the universe of the secular trend model is continuously variational. In addition, most forecasting methods rely on prior information, i.e., fuzzy relationship groups (FRG). Numerous relationship groups lead to the explosive growth of relationship library in a linear model and increase the computational complexity. To overcome problems above and ascertain an appropriate order, an intuitionistic fuzzy time series forecasting model based on order decision and adaptive partition algorithm is proposed. By forecasting the vector operator matrix, the proposed model can adjust partitions and intervals adaptively. The proposed model is tested on student enrollments of Alabama dataset, typical seasonal dataset Taiwan Stock Exchange Capitalization Weighted Stock Index (TAIEX) and a secular trend dataset of total retail sales for social consumer goods in China. Experimental results illustrate the validity and applicability of the proposed method for different patterns of dataset.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《系统工程与电子技术:英文版》
  • 主管单位:中国航天机电集团
  • 主办单位:中国航天工业总公司二院
  • 主编:高淑霞
  • 地址:北京海淀区永定路52号
  • 邮编:100854
  • 邮箱:jseeoffice@126.com
  • 电话:010-68388406 68386014
  • 国际标准刊号:ISSN:1004-4132
  • 国内统一刊号:ISSN:11-3018/N
  • 邮发代号:82-270
  • 获奖情况:
  • 航天系统优秀期刊奖,美国工程索引(EI)和英国科学文摘(SA)收录
  • 国内外数据库收录:
  • 荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,美国科学引文索引(扩展库),英国科学文摘数据库
  • 被引量:242