位置:成果数据库 > 期刊 > 期刊详情页
General Trends in Electronic Structure, Stability, Chemical Bonding and Mechanical Properties of Ultrahigh Temperature Ceramics TMB2(TM=transition metal)
  • ISSN号:1005-0302
  • 期刊名称:《材料科学技术学报:英文版》
  • 时间:0
  • 分类:TQ174.1[化学工程—陶瓷工业;化学工程—硅酸盐工业]
  • 作者机构:Science and Technology on Advance Functional Composite Laboratory, Aerospace Research Institute of Materials & Processing Technology
  • 相关基金:supported by the National Outstanding Young Scientist Foundation for Y.C. Zhou under Grant No. 59925208;the Natural Science Foundation of China under Grant Nos. 50832008 and U1435206
中文摘要:

The electronic structure, stability, chemical bonding and mechanical properties of 3d, 4d and 5d transition metal diboride TMB2 were investigated using first-principles calculations based on density functional theory. All the primary chemical bonds, i.e., metallic, ionic and covalent have contributions to the bonding of TMB2. The number of valence electrons of transition metals or the valence electron concentration(VEC) of TMB2 has strong effects on the lattice parameters, stability and mechanical properties of TMB2. Both lattice constants a and c decrease with VEC, but c decreases faster than a, which is attributed to the enhanced TM de B p(sp2) bonding. Bulk modulus B of TMB2 increases continuously with VEC due to the enhanced TM de B p(sp2) and TM dd bonding. Shear modulus G increases with VEC,reaching a maximum at VEC=3.33, and then decreases with further increase of VEC. YB2 and Mn B2 have low Young’s modulus and are predicted to have good thermal shock resistance. According to Pugh’s criterion(G/B < 0.571), Mn B2, Mo B2 and WB2are predicted as ductile or damage tolerant ultrahigh temperature ceramics(UHTCs).

英文摘要:

The electronic structure, stability, chemical bonding and mechanical properties of 3d, 4d and 5d transition metal diboride TMB2 were investigated using first-principles calculations based on density functional theory. All the primary chemical bonds, i.e., metallic, ionic and covalent have contributions to the bonding of TMB2. The number of valence electrons of transition metals or the valence electron concentration(VEC) of TMB2 has strong effects on the lattice parameters, stability and mechanical properties of TMB2. Both lattice constants a and c decrease with VEC, but c decreases faster than a, which is attributed to the enhanced TM de B p(sp2) bonding. Bulk modulus B of TMB2 increases continuously with VEC due to the enhanced TM de B p(sp2) and TM dd bonding. Shear modulus G increases with VEC,reaching a maximum at VEC=3.33, and then decreases with further increase of VEC. YB2 and Mn B2 have low Young’s modulus and are predicted to have good thermal shock resistance. According to Pugh’s criterion(G/B < 0.571), Mn B2, Mo B2 and WB2are predicted as ductile or damage tolerant ultrahigh temperature ceramics(UHTCs).

同期刊论文项目
期刊论文 6
同项目期刊论文
期刊信息
  • 《材料科学技术学报:英文版》
  • 中国科技核心期刊
  • 主管单位:中国科协
  • 主办单位:中国金属学会
  • 主编:
  • 地址:中国沈阳文化路72号
  • 邮编:110016
  • 邮箱:
  • 电话:024-83978208
  • 国际标准刊号:ISSN:1005-0302
  • 国内统一刊号:ISSN:21-1315/TG
  • 邮发代号:
  • 获奖情况:
  • 国家“双百”期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国化学文摘(网络版),荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,美国科学引文索引(扩展库),日本日本科学技术振兴机构数据库,中国中国科技核心期刊
  • 被引量:474