位置:成果数据库 > 期刊 > 期刊详情页
基于版本空间解析中心的多类分类器的泛化性能分析
  • ISSN号:1000-1239
  • 期刊名称:《计算机研究与发展》
  • 时间:0
  • 分类:TP391[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]湖南大学计算机与通信学院,长沙410082
  • 相关基金:国家自然科学基金项目(60673061);教育部高等学校博士学科点专项科研基金项目(20070532089);长沙市科技计划项目(K0802138-11)
中文摘要:

多类分类是机器学习领域中的重要问题.目前普遍采用的多类分类方法:“oneversus all”(OvA)直接利用“标准”的两类分类器重复构造两类分类器,导致计算复杂度较高、分类效率降低.基于支持向量机的多类分类器尽管无需重复构造两类分类器,但由于它对应于版本空间(version space)内最大超球的中心,所以当版本空间为非对称或比较狭长时,它的泛化能力显著降低.而基于版本空间解析中心的多类分类算法M—ACM克服了上述问题.从理论上分析了该分类器的泛化性能,给出了它的泛化误差上界,并进行了实验验证.

英文摘要:

Analytical center machine, based on the analytical center of version space, outperforms support vector machine, especially when the version space is elongated or asymmetric. While analytical center machine for binary classification is well understood, little is known about corresponding multi-class classification. Multi-class classification is a significant challenge theoretically and practically in the field of machine learning. The current multi-class classification method, one versus all, needs constructing classifiers repeatedly to separate a single class from all the others, which leads to daunting computation and low efficiency of classification. Though multi-class support vector machine corresponds to a simple quadratic optimization, it is not very effective when the version space is asymmetric or elongated. Thus, the multi-class classification approach based on the analytical center of version space, which corresponds to a simple quadratic constrained linear optimization, is proposed to address the above problems. At the same time, in order to validate its generalization performance theoretically, its generalization error upper bound is formulated and proved. Experiments on wine recognition and glass identification dataset show that the multi-class classification approach based on the analytical center of version space outperforms the multi-class support vector machine in generalization error.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机研究与发展》
  • 中国科技核心期刊
  • 主管单位:中国科学院
  • 主办单位:中国科学院计算技术研究所
  • 主编:徐志伟
  • 地址:北京市科学院南路6号中科院计算所
  • 邮编:100190
  • 邮箱:crad@ict.ac.cn
  • 电话:010-62620696 62600350
  • 国际标准刊号:ISSN:1000-1239
  • 国内统一刊号:ISSN:11-1777/TP
  • 邮发代号:2-654
  • 获奖情况:
  • 2001-2007百种中国杰出学术期刊,2008中国精品科...,中国期刊方阵“双效”期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,荷兰文摘与引文数据库,美国工程索引,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:40349