位置:成果数据库 > 期刊 > 期刊详情页
基于支持向量机的微体系结构设计空间探索
  • ISSN号:0479-8023
  • 期刊名称:《北京大学学报:自然科学版》
  • 时间:0
  • 分类:TP33[自动化与计算机技术—计算机系统结构;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]北京大学微处理器研发中心,北京100871, [2]北京大学深圳研究生院微处理器研发中心,深圳518055
  • 相关基金:国家自然科学基金资助项目(60703067) Acknowledgements The authors would like to acknowledge Lin Xinfen, Zhao Yulai and other members of performance evaluation group.
中文摘要:

通过对微处理器设计空间中有限的设计方案进行模拟,建立支持向量回归模型,对未经模拟的设计进行性能和功耗的预测,从而大大减少了评估整个设计空间的所需时间。通过模型预测得到的最优设计方案和通过模拟得到的最优设计方案很接近,提供了对巨大设计空间进行裁减的方法。将设计空间中0.26%的设计方案作为训练数据,得到的支持向量回归模型对性能和功耗的平均预测错误率分别为0.52%和1.08%,均优于已有的回归模型。相关分析数据显示预测结果和详细模拟结果高度相关,性能和功耗的平均平方相关系数分别为0.728和0.703,这表明支持向量回归模型能捕获各微体系设计参数之间的复杂交互。该模型还为每个预测结果指出了置信区间。

英文摘要:

The authors propose an approach to reduce the number of required simulations, simulate on sampled design points, and use it to construct informative and predictive support vector regression models. Having captured the interacting effects of design parameters, the models predict outputs for design points that are not simulated. The prediction time of model can be negligible compared with detailed simulation. The optimal design point determined by prediction is very close to that of simulation for most applications and provides an efficient way to cull huge design space. Trained on only 0.26% design points, the models yield mean relative prediction error as low as 0.52 % for performance and 1.08 % for power. Correlation analysis demonstrates that prediction output is highly correlated with simulated observation. The average squared correlation coefficient is 0. 728 for performance models while 0. 703 for power models, which implies that support vector regressions capture most of relationships among design parameters. The model also provides a predictive probability interval for each prediction, which is informative for computer architects.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《北京大学学报:自然科学版》
  • 中国科技核心期刊
  • 主管单位:教育部
  • 主办单位:北京大学
  • 主编:赵光达
  • 地址:北京海淀区海淀路52号
  • 邮编:100871
  • 邮箱:xbna@pku.edu.cn
  • 电话:010-62756706
  • 国际标准刊号:ISSN:0479-8023
  • 国内统一刊号:ISSN:11-2442/N
  • 邮发代号:2-89
  • 获奖情况:
  • 1997年第二届全国优秀科技期刊评比一等奖,1999年教育部“优秀自然科学学报一等奖”,1999年获首届国家期刊奖,中国期刊方阵“双高”期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国化学文摘(网络版),美国数学评论(网络版),德国数学文摘,荷兰文摘与引文数据库,英国科学文摘数据库,英国动物学记录,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),英国英国皇家化学学会文摘,中国北大核心期刊(2000版)
  • 被引量:18270