位置:成果数据库 > 期刊 > 期刊详情页
快速稀疏分解在雷达目标识别中的应用
  • ISSN号:0258-7998
  • 期刊名称:电子技术应用
  • 时间:2015
  • 页码:64-67
  • 分类:TN959.17[电子电信—信号与信息处理;电子电信—信息与通信工程]
  • 作者机构:[1]西安石油大学计算机学院,陕西西安710065, [2]西北工业大学电子信息学院,陕西西安710029
  • 相关基金:国家自然科学基金(61171155),陕西省自然科学基金(2012JM8010)
  • 相关项目:基于信息融合的机载雷达目标识别新算法研究
作者: 段沛沛|李辉|
中文摘要:

高分辨距离像目标识别算法很多,但利用高分辨距离像(HRRP)稀疏特点进行识别的方法却不多。为此,提出一种基于结构划分过完备字典完成雷达一维距离像稀疏分解,进而实现目标识别的算法。该算法首先依据字典原子的结构特点对其进行划分,简化字典表述的同时减少了原子数据存储量;随后,采用遗传匹配追踪算法(GAMP)对一维距离像训练样本进行稀疏分解以获得类别字典;最后,根据类别字典分析测试样本的重构误差实现目标识别。仿真实验证明,文中算法简洁、识别率高,即便受到噪声干扰依然能稳健地识别目标。

英文摘要:

There are many radar target recognition algorithms based on high range resolution profile (HRRP), but less of them employ the sparseness of HRRP samples. Thus, an redundant dictionary and a fast sparse representation algorithm are used to implement radar target recognition here. First, a Gabor redundant dictionary was partitioned by the characteristics of the atoms in it. By doing this, the atoms storage was decreased and the dictionary was generated faster. Then, the genetic algorithm-matching pursuit algorithm(GAMP) was used to product the training samples' taxonomic dictionaries quickly. Finally, the reconstruction errors of testing samples were calculated to recognize the targets. The simulations show that this algorithm has the advantages of concise, higher recognition rate and good robustness.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《电子技术应用》
  • 中国科技核心期刊
  • 主管单位:中国电子信息产业集团有限公司
  • 主办单位:华北计算机系统工程研究所
  • 主编:杨晖
  • 地址:北京市海淀区清华路25号
  • 邮编:100083
  • 邮箱:xinzw@ncse.com.cn
  • 电话:010-66608981 66608982
  • 国际标准刊号:ISSN:0258-7998
  • 国内统一刊号:ISSN:11-2305/TN
  • 邮发代号:2-889
  • 获奖情况:
  • 国家期刊奖,中文核心期刊奖,中国科技期刊奖,电子精品科技期刊
  • 国内外数据库收录:
  • 日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:20858